tany = x+y: find dy/dx, pts where tangent is vertical, and

xc630

Junior Member
Joined
Sep 1, 2005
Messages
164
Hello could someone please check my work for this problem. Any response would be appreciated

Consider the relation defined by the equation tan y= x+y for x in the open interval -2pi<x<2pi

a)Find dy/dx in terms of y
b)Find the x and y coordinates of each point where the tangent line to the grpah is vertical.
c)Find (d^2y)/(dx^2)

a) d/dx tany-y =x)
sec^2y (dy/dx) - dy/dx = 1
dy/dx (sec^2y-1) = 1
dy/dx = 1/ (sec^2-1)

b) sec^2y= 1
1/ (cos^2y) = 1
cos^2y = 1
y= 0 or pi
(0,0) and (pi, 0)

c) dy/dx = 1/ (sec^2y-1)
d^2y/dx^2= (sec^2y-1)^-1
= -1 (sec^2y-1)^-2 * tan y
= -tan y/ (SQRT (sec^2y-1))
 
Re: tany = x+y: find dy/dx, pts where tangent is vertical, a

Hello, xc630!

A small error in part (b) . . . a larger one in (c).


Given: \(\displaystyle \,\tan y \:=\: x\,+\,y\) for \(\displaystyle (-\2pi,\,2\pi)\)

a) Find \(\displaystyle \frac{dy}{dx}\) in terms of \(\displaystyle y\)
b) Find the \(\displaystyle x\) and \(\displaystyle y\) coordinates of each point where the tangent line to the grpah is vertical.
c) Find \(\displaystyle \frac{d^2y}{dx^2}\)

\(\displaystyle (a)\;\frac{d}{dx}[\tan y\,-\,y\:=\:x]\;\;\Rightarrow\;\;\sec^2y\left(\frac{dy}{dx}\right)\,-\,\frac{dy}{dx}\:=\:1\)
\(\displaystyle \frac{dy}{dx}(\sec^2y\,-\,1) \:= \:1\;\;\Rightarrow\;\;\frac{dy}{dx}\:=\:\frac{1}{\sec^2y\,-\,1}\)

This correct, but did you notice that: \(\displaystyle \,\sec^2y\,-\,1\:=\:\tan^2y\) ?



\(\displaystyle (b)\;\sec^2y\:=\: 1\;\;\Rightarrow\;\;\frac{1}{\cos^2y}\: =\: 1\;\;\Rightarrow\;\;\cos^2y\:=\:1\;\;\Rightarrow\;\;y\:=\:0,\,\pi\;\) Right!
\(\displaystyle (0,\,0)\) and \(\displaystyle \sout{(\pi,\,0)}\;\) no

When \(\displaystyle y\,=\,\pi\), we have: \(\displaystyle \:\tan\pi\:=\:x\,+\,\pi\quad\Rightarrow\quad0 \:=\:x + \pi\quad\Rightarrow\quad x = -\pi\)



\(\displaystyle (c)\;\frac{dy}{dx}\:=\:\frac{1}{\sec^2y\,-\,1}\:=\:(\sec^2y\,-\,1)^{-1}\)
\(\displaystyle \frac{d^2y}{dx^2}\:=\:-1(\sec^2y\,-\,1)^{-2}\cdot\sout{\tan y}\;\) no

The derivative of \(\displaystyle \sec^2y\,-\,1\) is: \(\displaystyle \,2\cdot\sec y\,\cdot\,\sec y\cdot\tan y \:=\:2\cdot\sec^2y\cdot\tan y\)

Actually, you had: \(\displaystyle \,\frac{dy}{dx}\:=\:\frac{1}{\tan^2y}\:=\:\cot^2y\)

Then: \(\displaystyle \:\frac{d^2y}{dx^2}\:=\:-2\cdot\cot y\cdot\csc^2y\)

 
Top