Im a little confused as how to do this problem
find R(x) for f(x) = sinx, a = 0, n=4
f(x) = sinx f(0) = 0
f '(x) = cosx f(0) = 1
f ''(x) = -sinx f(0) = 0
f '''(x) = -cosx f(0) = -1
f ''''(x) = sinx f(0) = 0
f '''''(x) = cosx f(0) = 1
R(x) =( f^n+1 (c) (x- a)^n+1)/(n+1)!
= f^5 (c)(x - 0)^5/(5!)
= cos(c)x^5/5!
a<c<x
0<c<x
find R(x) for f(x) = sinx, a = 0, n=4
f(x) = sinx f(0) = 0
f '(x) = cosx f(0) = 1
f ''(x) = -sinx f(0) = 0
f '''(x) = -cosx f(0) = -1
f ''''(x) = sinx f(0) = 0
f '''''(x) = cosx f(0) = 1
R(x) =( f^n+1 (c) (x- a)^n+1)/(n+1)!
= f^5 (c)(x - 0)^5/(5!)
= cos(c)x^5/5!
a<c<x
0<c<x