Surface Area

JJ007

New member
Joined
Nov 7, 2009
Messages
27
Find the area of the portion of the sphere x2+y2+z2=9\displaystyle x^2+y^2+z^2=9 that lies inside the cylinderx2+y2=3y\displaystyle x^2+y^2=3y

S=R1+[fx(x,y)]2+[fy(x,y)]2dA\displaystyle S=\int_R\int\sqrt{1+[f_x(x,y)]^2+[f_y(x,y)]^2}dA

Not sure what to do.

Thanks
 
Quite a protracted one, however Ill take a stab at it.\displaystyle Quite \ a \ protracted \ one, \ however \ I'll \ take \ a \ stab \ at \ it.

Find the area of the portion of the sphere x2+y2+z2 = 9 that lies inside the\displaystyle Find \ the \ area \ of \ the \ portion \ of \ the \ sphere \ x^2+y^2+z^2 \ = \ 9 \ that \ lies \ inside \ the

 cylinder x2+y2 = 3y. Note, z = f(x,y)\displaystyle \ cylinder \ x^2+y^2 \ = \ 3y. \ Note, \ z \ = \ f(x,y)

Ergo, S = R1+[fx(x,y)]2+[fy(x,y)]2dA = R1+(zx)2+(zy)2dA\displaystyle Ergo, \ S \ = \ \int_R\int\sqrt{1+[f_x(x,y)]^2+[f_y(x,y)]^2} dA \ = \ \int_R\int\sqrt{1+(z_x)^2+(z_y)^2} dA

now z2 = 9x2+y2, z = ±9x2y2\displaystyle now \ z^2 \ = \ 9-x^2+y^2, \ z \ = \ \pm\sqrt{9-x^2-y^2}

zx = ±12(9x2y2)1/2(2x) = ±x(9x2y2)1/2 = (xz).\displaystyle z_x \ = \ \pm\frac{1}{2}(9-x^2-y^2)^{-1/2}(-2x) \ = \ \pm\frac{-x}{(9-x^2-y^2)^{1/2}} \ = \ \bigg(\frac{-x}{z}\bigg).

zy = ±12(9x2y2)1/2(2y) = ±y(9x2y2)1/2 = (yz).\displaystyle z_y \ = \ \pm\frac{1}{2}(9-x^2-y^2)^{-1/2}(-2y) \ = \ \pm\frac{-y}{(9-x^2-y^2)^{1/2}} \ = \ \bigg(\frac{-y}{z}\bigg).

zx2+zy2+1 = x2z2+y2z2+1 = x2+y2+z2z2 = 99x2y2\displaystyle z_x^2+z_y^2+1 \ = \ \frac{x^2}{z^2}+\frac{y^2}{z^2}+1 \ = \ \frac{x^2+y^2+z^2}{z^2} \ = \ \frac{9}{9-x^2-y^2}

and x2+y2 = 3y      r2 = 3rsin(θ),      r = 3sin(θ).\displaystyle and \ x^2+y^2 \ = \ 3y \ \implies \ r^2 \ = \ 3rsin(\theta), \ \implies \ r \ = \ 3sin(\theta).

Hence, S = (2)(2)0π/203sin(θ)3r9r2drdθ = 18(π2) sq. units\displaystyle Hence, \ S \ = \ (2)(2)\int_{0}^{\pi/2}\int_{0}^{3sin(\theta)}\frac{3r}{\sqrt{9-r^2}} drd\theta \ = \ 18(\pi-2) \ sq. \ units

Here is its graph.\displaystyle Here \ is \ its \ graph.

[attachment=0:3dl6s1ta]iii.jpg[/attachment:3dl6s1ta]
 

Attachments

  • iii.jpg
    iii.jpg
    28 KB · Views: 73
BigGlenntheHeavy said:
Quite a protracted one, however Ill take a stab at it.\displaystyle Quite \ a \ protracted \ one, \ however \ I'll \ take \ a \ stab \ at \ it.

Find the area of the portion of the sphere x2+y2+z2 = 9 that lies inside the\displaystyle Find \ the \ area \ of \ the \ portion \ of \ the \ sphere \ x^2+y^2+z^2 \ = \ 9 \ that \ lies \ inside \ the

 cylinder x2+y2 = 3y. Note, z = f(x,y)\displaystyle \ cylinder \ x^2+y^2 \ = \ 3y. \ Note, \ z \ = \ f(x,y)

Ergo, S = R1+[fx(x,y)]2+[fy(x,y)]2dA = R1+(zx)2+(zy)2dA\displaystyle Ergo, \ S \ = \ \int_R\int\sqrt{1+[f_x(x,y)]^2+[f_y(x,y)]^2} dA \ = \ \int_R\int\sqrt{1+(z_x)^2+(z_y)^2} dA

now z2 = 9x2+y2, z = ±9x2y2\displaystyle now \ z^2 \ = \ 9-x^2+y^2, \ z \ = \ \pm\sqrt{9-x^2-y^2}

zx = ±12(9x2y2)1/2(2x) = ±x(9x2y2)1/2 = (xz).\displaystyle z_x \ = \ \pm\frac{1}{2}(9-x^2-y^2)^{-1/2}(-2x) \ = \ \pm\frac{-x}{(9-x^2-y^2)^{1/2}} \ = \ \bigg(\frac{-x}{z}\bigg).

zy = ±12(9x2y2)1/2(2y) = ±y(9x2y2)1/2 = (yz).\displaystyle z_y \ = \ \pm\frac{1}{2}(9-x^2-y^2)^{-1/2}(-2y) \ = \ \pm\frac{-y}{(9-x^2-y^2)^{1/2}} \ = \ \bigg(\frac{-y}{z}\bigg).

zx2+zy2+1 = x2z2+y2z2+1 = x2+y2+z2z2 = 99x2y2\displaystyle z_x^2+z_y^2+1 \ = \ \frac{x^2}{z^2}+\frac{y^2}{z^2}+1 \ = \ \frac{x^2+y^2+z^2}{z^2} \ = \ \frac{9}{9-x^2-y^2}

and x2+y2 = 3y      r2 = 3rsin(θ),      r = 3sin(θ).\displaystyle and \ x^2+y^2 \ = \ 3y \ \implies \ r^2 \ = \ 3rsin(\theta), \ \implies \ r \ = \ 3sin(\theta).

Hence, S = (2)(2)0π/203sin(θ)3r9r2drdθ\displaystyle Hence, \ S \ = \ (2)(2)\int_{0}^{\pi/2}\int_{0}^{3sin(\theta)}\frac{3r}{\sqrt{9-r^2}} drd\theta

I think Im right up to here, can someone finished it off?\displaystyle I \ think \ I'm \ right \ up \ to \ here, \ can \ someone \ finished \ it \ off?

No need. I think that's good enough.
Thanks a lot!
 
Top