Hi all,
How do you do the question below?
Express \(\displaystyle (\frac{\sqrt{5} - 1}{\sqrt{5} + 2})^2\) in the form of \(\displaystyle A + B \sqrt(5)\), where A and B are integers.
\(\displaystyle (\frac{\sqrt{5} - 1}{\sqrt{5} + 2})^2
= [\frac{(\sqrt{5} - 1)(\sqrt{5} - 2)}{(\sqrt{5} + 2)(\sqrt{5} - 2)}]^2
= [\frac{(5 - 2\sqrt{5} - \sqrt{5} + 2)}{(\sqrt{5} - 2)^2}]^2
= [\frac{5 - 3\sqrt{5} + 2}{5-4}]^2
= (\frac{7-3\sqrt{5}}{1})^2
=49 - 9\sqrt{5}\)
I can't seem to be able to get \(\displaystyle 94 - 42\sqrt{5}\)
Thanks
How do you do the question below?
Express \(\displaystyle (\frac{\sqrt{5} - 1}{\sqrt{5} + 2})^2\) in the form of \(\displaystyle A + B \sqrt(5)\), where A and B are integers.
\(\displaystyle (\frac{\sqrt{5} - 1}{\sqrt{5} + 2})^2
= [\frac{(\sqrt{5} - 1)(\sqrt{5} - 2)}{(\sqrt{5} + 2)(\sqrt{5} - 2)}]^2
= [\frac{(5 - 2\sqrt{5} - \sqrt{5} + 2)}{(\sqrt{5} - 2)^2}]^2
= [\frac{5 - 3\sqrt{5} + 2}{5-4}]^2
= (\frac{7-3\sqrt{5}}{1})^2
=49 - 9\sqrt{5}\)
I can't seem to be able to get \(\displaystyle 94 - 42\sqrt{5}\)
Thanks