\(\displaystyle b^4=(b^2)^2 = (aba^{-1})(aba^{-1}) = ab^2a^{-1}\). So, \(\displaystyle b^4=ab^2a^{-1}\).
Continuing in this manner (THIS SHOULD BE PROVED WITH A LEMMA), we see that \(\displaystyle b^{2k}=ab^{k}a^{-1}\).
You are looking for the smallest such integer C such that \(\displaystyle b^C = e\).
So, notice \(\displaystyle 2^5 = 32\), and
\(\displaystyle b^{32} = ab^{16}a^{-1} = a(ab^{8}a^{-1})a^{-1} \\ \,\, = a^2(ab^4a^{-1})a^{-2} = a^3(ab^2a^{-1})a^{-3} \\ \,\, = a^4(aba^{-1})a^{-4} =a^{-5}ba^5\)
BUT! \(\displaystyle a^5 = e = a^{-5}\)
So,
\(\displaystyle b^{32} = a^{-5}ba^5 = b \\
\Leftrightarrow b^{32} = b \\
\Leftrightarrow b^{31}=e\)
Since 31 is prime, \(\displaystyle b^{31}=e\) IMPLIES |b|=31.
Hope that helps,
-daon