Hello, SuperDude!
Unco is absolutely correct . . . and there's more . . .
What is the sum of the roots of the equation \(\displaystyle 8x^3\,-\,2x^2\,+\,8x\,-\,7\:=\:0\)
Given any cubic equation:
.\(\displaystyle ax^3\,+\,bx^2\,+\,cx\,+\,d\:=\:0\)
Divide by the leading coefficient:
.\(\displaystyle x^3\,+\,\frac{b}{a}x^2\,+\,\frac{d}{a}x\,+\,\frac{d}{a}\:=\:0\)
We have four coefficients:
.\(\displaystyle \L1,\;\frac{b}{a},\;\frac{c}{a},\;\frac{d}{a}\)
. . . . . . . . . . . . . . . . . . . . . .\(\displaystyle \uparrow\;\,\uparrow\;\uparrow\;\:\uparrow\)
Assign alternating signs:
. .+ . .- . .+ . .-
And we have:
.\(\displaystyle \L1,\;-\frac{b}{a},\;\frac{c}{a},\;-\frac{d}{a}\)
If \(\displaystyle p,\,q,\,r\) are the roots of the cubic, then:
. . . . . \(\displaystyle \L p\,+\,q\,+\,t\;\;\;=\,-\frac{b}{a}\)
. . . .
. sum of the roots, taken one at a time
. . . \(\displaystyle \L pq\,+\,qr\,+\,pr\:=\;\;\frac{c}{a}\)
. . . .
.sum of the roots, taken two at a time
. . . . . . . . . \(\displaystyle \L pqr\;\;\;\;\;=\,-\frac{d}{a}\)
. . . .
. sum of the roots, taken three at a time
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
This prodecure can expanded to higher-degree polynomial equations.
For example, a quartic:
.\(\displaystyle ax^4\,+\,bx^3\,+\,cx^2\,+\,dx\,+\,e\:=\:0\)
If \(\displaystyle p,\,q,\,r,\,s\) are the roots of the quartic, then:
. . . . . . . . . . . . \(\displaystyle \L p\,+\,q\,+\,r\,+\,s\;\;\;\;\;\;\;\;\;=\,-\frac{b}{a}\)
. . . .
. one at a time
. . . \(\displaystyle \L pq\,+\,pr\,+\,ps\,+\,qr\,+\,qs\,+\,rs\:=\;\;\,\frac{c}{a}\)
. . . .
. two at a time
. . . . . . .\(\displaystyle \L pqr\,+\,pqs\,+\,prs\,+\,qrs\;\;\;\;=\,-\frac{d}{a}\)
. . . .
. three at a time
. . . . . . . . . . . . . . . . . .\(\displaystyle \L pqrs\;\;\;\;\;\;\;\;\;\;\;\;\;=\;\;\,\frac{e}{a}\)
. . . .
. four at a time