wallflower
New member
- Joined
- Jan 3, 2017
- Messages
- 1
What is the sum of infinite series 1+3/4+7/16+15/64+.........
What is the n th term of this series?What is the sum of infinite series 1+3/4+7/16+15/64+.........
\(\displaystyle \displaystyle\sum\limits_{n = 1}^\infty {\frac{{{2^n} - 1}}{{{4^{n-1} }}}} = ?\)What is the sum of infinite series 1+3/4+7/16+15/64+.........
Which is, of course, \(\displaystyle \displaystyle\sum\limits_{n = 1}^\infty \frac{2^n}{4^n} - \sum\limits_{n = 1}^\infty \frac{1}{4^{n-1}}\)\(\displaystyle \displaystyle\sum\limits_{n = 1}^\infty {\frac{{{2^n} - 1}}{{{4^{n-1} }}}} = ?\)
You post the answer!
Spoil-sport.Which is, of course, \(\displaystyle \displaystyle\sum\limits_{n = 1}^\infty \frac{2^n}{4^n} - \sum\limits_{n = 1}^\infty \frac{1}{4^{n-1}}\)
\(\displaystyle = \sum\limits_{n = 1}^\infty \frac{1}{2^n}- 4\sum\limits_{n = 1}^\infty \frac{1}{4^n}\).
Both are geometric series.
Spoil-sport.
\(\displaystyle \displaystyle\sum\limits_{n = 1}^\infty {\frac{{{2^n} - 1}}{{{4^{n-1} }}}} = ?\)
\(\displaystyle = \ \displaystyle\sum\limits_{n = 1}^\infty \frac{2^n}{4^n} - \sum\limits_{n = 1}^\infty \frac{1}{4^{n-1}}\)
\(\displaystyle = \sum\limits_{n = 1}^\infty \frac{1}{2^n}- 4\sum\limits_{n = 1}^\infty \frac{1}{4^n}\).