If \(\displaystyle k\in\mathbb{Z^+}\wedge 9k+1\), prove that
the reapiting sum digits of \(\displaystyle 9k+1\) equals at the end \(\displaystyle 1\)
For example if:
\(\displaystyle k=1\) then \(\displaystyle 9*1+1=10\rightarrow 1+0=1\)
\(\displaystyle k=2\) then \(\displaystyle 9*2+1=19\rightarrow 1+9=10\rightarrow 1+0=1\)
\(\displaystyle k=15\) then \(\displaystyle 9*15+1=136\rightarrow 1+3+6=10\rightarrow 1+0=1\)
Always it ends to 1. Why?
the reapiting sum digits of \(\displaystyle 9k+1\) equals at the end \(\displaystyle 1\)
For example if:
\(\displaystyle k=1\) then \(\displaystyle 9*1+1=10\rightarrow 1+0=1\)
\(\displaystyle k=2\) then \(\displaystyle 9*2+1=19\rightarrow 1+9=10\rightarrow 1+0=1\)
\(\displaystyle k=15\) then \(\displaystyle 9*15+1=136\rightarrow 1+3+6=10\rightarrow 1+0=1\)
Always it ends to 1. Why?