I need to show that the sum norm on P[sub:1epcx0w4]2[/sub:1epcx0w4] is not defined form an inner product. So show that there is no inner product <,> on P[sub:1epcx0w4]2[/sub:1epcx0w4] such that
||ax[sup:1epcx0w4]2[/sup:1epcx0w4] +bx[sup:1epcx0w4]2[/sup:1epcx0w4] +c ||[sub:1epcx0w4]s[/sub:1epcx0w4] = sqr root(<ax[sup:1epcx0w4]2[/sup:1epcx0w4] +bx[sup:1epcx0w4]2[/sup:1epcx0w4] +c , ax[sup:1epcx0w4]2[/sup:1epcx0w4] +bx[sup:1epcx0w4]2[/sup:1epcx0w4] +c >)
I know that if a norm is defined from an inner product then <u,v> = 1/2(||u+v||[sup:1epcx0w4]2[/sup:1epcx0w4] - ||u||[sup:1epcx0w4]2[/sup:1epcx0w4] - ||v||[sup:1epcx0w4]2[/sup:1epcx0w4])
Do I start with the above known and try to prove that the sum norm doesn't work for this?
||ax[sup:1epcx0w4]2[/sup:1epcx0w4] +bx[sup:1epcx0w4]2[/sup:1epcx0w4] +c ||[sub:1epcx0w4]s[/sub:1epcx0w4] = sqr root(<ax[sup:1epcx0w4]2[/sup:1epcx0w4] +bx[sup:1epcx0w4]2[/sup:1epcx0w4] +c , ax[sup:1epcx0w4]2[/sup:1epcx0w4] +bx[sup:1epcx0w4]2[/sup:1epcx0w4] +c >)
I know that if a norm is defined from an inner product then <u,v> = 1/2(||u+v||[sup:1epcx0w4]2[/sup:1epcx0w4] - ||u||[sup:1epcx0w4]2[/sup:1epcx0w4] - ||v||[sup:1epcx0w4]2[/sup:1epcx0w4])
Do I start with the above known and try to prove that the sum norm doesn't work for this?