sum formula for 1/x^2 + 1/x^2 + 1/x^3 + ...?

Re: last question - sum formula?

Hello, deemanw!


What is formula for: \(\displaystyle \L\,\frac{1}{x^1} \,+ \,\frac{1}{x^2}\,+\,\frac{1}{x^3}\,+\,\frac{1}{x^4}\,+\,\cdots\)

The sum of an infinite geometric series is: \(\displaystyle \L\,S \;=\;\frac{a}{1 - r}\)
\(\displaystyle \;\;\)where \(\displaystyle a\) is the first term and \(\displaystyle r\) is the common ratio.

We are given a geometric series with: \(\displaystyle \,a\,=\,\frac{1}{x}\) and \(\displaystyle r\,=\,\frac{1}{x}\)

Therefore, the sum is: \(\displaystyle \L\,S\;= \;\frac{\frac{1}{x}}{1\,-\frac{1}{x}} \;= \;\frac{1}{x\,-\,1}\)

 
Top