For which x€R and x>0 the following equality is satisfied:
nx^2+2^2/(x+1)+3^2/(x+2)......+(n+1)^2/(x+n)=nx + n(n+3)/2
?
I found out that for x=1 the equality holds true but I'm not sure how to prove if there are any other answers.
Thanks in advance!
Well, despite considerable effort, I have not found an algebraic proof. I do not assert that an algebraic proof is impossible; indeed I am relatively confident that one exists. I merely am not clever enough to find it. Finding an algebraic proof might make a good challenge problem. (Denis likes puzzles.)
A proof using differential calculus, however, is easy.
\(\displaystyle \text {PROVE: } x = 1 \text { if } x \in \mathbb R,\ x > 0,\ f_n(x) = 0,\ n \in \mathbb Z,\ n \ge 1,\)
\(\displaystyle \displaystyle \text{and } f_n(x) = nx^2 - nx - \dfrac{n(n + 3)}{2} + \sum_{j=1}^n \dfrac{(j + 1)^2}{j + x}.\)
Proof below ignores the possibility of complex roots because x is real by hypothesis.
\(\displaystyle \displaystyle f_n(x) = nx^2 - nx - \dfrac{n(n + 3)}{2} + \sum_{j=1}^n \dfrac{(j + 1)^2}{j + x} \implies\)
\(\displaystyle \displaystyle f_n(x) = nx^2 - nx - \dfrac{n(n + 3)}{2} + \left ( \sum_{j=1}^n (j + 1)^2(j + x)^{-1} \right ).\)
\(\displaystyle \displaystyle \therefore f_n'(x) = 2nx - n + \left ( \sum_{j=1}^n (-\ 1)(j + 1)^2 (j + x)^{-2} \right ).\)
\(\displaystyle \displaystyle \therefore f_n''(x) = 2n + \left ( \sum_{j=1}^n (-\ 1)(-\ 2)(j+ 1)^2 (j + x)^{-3} \right ).\)
\(\displaystyle \displaystyle \text {Or } f_n'(x) = 2nx - n - \sum_{j=1}^n \dfrac{(j + 1)^2}{(j + x)^2} \text { and } f_n''(x) = 2n + 2 * \sum_{j=1}^n \dfrac{(j + 1)^2}{(j + x)^3}.\)
\(\displaystyle \therefore x > 0 \implies f_n''(x) > 0.\)
\(\displaystyle \displaystyle \text {And } f_n'(1) = 2n(1) - n - \sum_{j= 1}^n \dfrac{(j + 1)^2}{(j + 1)^2} = n - \sum_{j=1}^n 1 = n - n = 0.\)
\(\displaystyle \therefore x > 0 \text { and } x \ne 1 \implies f_n(x) > f_n(1).\)
\(\displaystyle \displaystyle f_n(1) = n * 1^2 - n * 1 - \dfrac{n(n + 3)}{2} + \sum_{j= 1}^n \dfrac{(j + 1)^2}{j + 1} = \left ( \sum_{j=1}^n j + 1 \right ) - \dfrac{n^2 + 3n}{2} \implies \)
\(\displaystyle \displaystyle f_n(1) = \left ( \sum_{j=1}^n j \right ) - \dfrac{n(n + 3)}{2} + \left ( \sum_{j= 1}^n 1 \right ) \implies\)
\(\displaystyle f_n(1) = \dfrac{n(n + 1)}{2} - \dfrac{n(n + 3)}{2} + n = \dfrac{n^2 + n - n^2 - 3n + 2n}{2} = \dfrac{0}{2} = 0.\)
\(\displaystyle \therefore x > 0 \text { and } x \ne 1 \implies f_n(x) > 0.\)
\(\displaystyle \therefore x > 0 \text { and } x \ne 1 \implies f_n(x) \ne 0.\)
\(\displaystyle \text { not } f_n(x) \ne 0 \implies \text { not } \{ x > 0 \text { and } x \ne 1 \}.\)
\(\displaystyle \therefore f_n(x) = 0 \implies x \not > 0 \text { or } x = 1.\)
\(\displaystyle \text {But, by hypothesis, } x > 0.\)
\(\displaystyle \therefore x = 1. \text { Q.E.D.}\)