Hello, ShanikaC!
Find exact vaules of \(\displaystyle sin,\;\cos,\;\tan\) of \(\displaystyle 15^o\) using sum and difference identities
You are expected to know those sum and difference identities:
\(\displaystyle \;\;\sin(A\,\pm\,B)\:=\:\sin(A)\cdot\cos(B)\,\pm\,\sin(B)\cdot\cos(A)\)
\(\displaystyle \;\;\cos(A\,\pm\,B)\:=\;\cos(A)\cdot\cos(B)\,\mp\,\sin(A)\cdot\sin(B)\)
\(\displaystyle \;\;\tan(A\,\pm\,B)\:=\:\frac{\tan(A)\,\pm\,\tan(B)}{1\,\mp\,\tan(A)\cdot\tan(B)}\)
Since \(\displaystyle 15^o\:=\:45^o\,-\,30^o\), we can the first one like this:
\(\displaystyle \L\sin(45^o\,-\,30^o)\;=\;\sin(45^o)\cdot\cos(30^o)\,-\,\sin(30^o)\cdot\cos(45^o)\)
. . . . . . \(\displaystyle \L= \;\left(\frac{\sqrt{2}}{2}\right)\left(\frac{\sqrt{3}}{2}\right)\,-\,\left(\frac{1}{2}\right)\left(\frac{\sqrt{2}}{2}\right) \;= \;\frac{\sqrt{6}\,-\,\sqrt{2}}{4}\)