Subtracting powers of two

Trenters4325

Junior Member
Joined
Apr 8, 2006
Messages
122
How would you prove that 2^x - 2^(x-1) - 2^(x-2)...2^0 = 1 for any x greater than or equal to 1?
 
Hello, Trenters4325!

Prove that: 2n2n12n220  =  1    \displaystyle \,2^n\,-\,2^{n-1}\,-\,2^{n-2}\,-\,\cdots\,-\,2^0\;=\;1\;\;for n1\displaystyle n\,\geq\,1
We have: S  =  2n[1+2+22++2n1]\displaystyle \,S\;=\;2^n\,-\,\underbrace{\left[1\,+\,2\,+\,2^2\,+\,\cdots\,+\,2^{n-1}\right]}
. . . . . . . . . . . . . . . . . . . . . . a geometric series

The series has first term a=1\displaystyle a\,=\,1, common ratio r=2\displaystyle r\,=\,2, and n\displaystyle n terms.

Its sum is: 112n12  =  2n1\displaystyle \,1\cdot\frac{1\,-\,2^n}{1\,-\,2}\;=\;2^n\,-\,1


Therefore: \(\displaystyle \:S\;=\;2^n\, -\, \left(2^n\,-\,1)\;=\;1\)
 
Top