Hello, Weatherkid11!
Find the general solution of the differential equation \(\displaystyle (x\,+\,y)\frac{dy}{dx}\:=\:1\)
First I made the DE equal to \(\displaystyle \frac{dy}{dx}:\;\frac{dy}{x}\:=\:\frac{1}{x\,+\,y}\)
Then I got my \(\displaystyle v:\;v\:=\:x\,+\,y\;\;\Rightarrow\;\;y\:=\:v\,-\,x\;\;\Rightarrow\;\;\frac{dy}{dx}\:=\:\frac{dv}{dx}\,-\,1\)
From here, I do not know how to finish.
Substitute: \(\displaystyle \L\:\frac{dv}{dx}\,-\,1\:=\:\frac{1}{v}\)
Some algebra: \(\displaystyle \L\:\frac{dv}{dx}\:=\:\frac{1}{v}\,+\,1\:=\:\frac{1\,+\,v}{v}\)
Separate variables: \(\displaystyle \:\frac{v}{1\,+\,v}\,dv\:=\:dx\;\;\Rightarrow\;\;\left(1\,-\,\frac{1}{v\,+\,1}\right)\,dv\:=\:dx\)
Integrate: \(\displaystyle \:v - \ln|v\,+\,1|\:=\:x\,+\,c\)
Back-substitute: \(\displaystyle \
x\,+\,y) - \ln|x\,+\,y\,+\,1|\:=\:x\,+\,c\)
Simplify: \(\displaystyle \:\ln|x\,+\,y\,+\,1|\:=\:y\,+\,c\)
Then: \(\displaystyle \:x\,+\,y\,+\,1\:=\:e^{y+c} \:=\:e^y\,\cdot\,e^c\)
Therefore: \(\displaystyle \;x\,+\,y\,+\,1\:=\:Ce^y\)