can someone check this
1) \(\displaystyle 2\sqrt[3]{6}\) - \(\displaystyle \sqrt[6]{6}\) + \(\displaystyle 3\sqrt[3]{6}\) - \(\displaystyle 3\sqrt[6]{384}\)
\(\displaystyle 3\sqrt[6]{384}\) = \(\displaystyle 2\sqrt[6]{6}\)
\(\displaystyle 2\sqrt[3]{6}\) - \(\displaystyle \sqrt[6]{6}\) + \(\displaystyle 3\sqrt[3]{6}\) - \(\displaystyle 2\sqrt[6]{6}\)
= \(\displaystyle 2\sqrt[6]{6}\)
2) \(\displaystyle \sqrt{15}\)(\(\displaystyle 2\sqrt{10}\) - \(\displaystyle 4\sqrt{6}\))
= \(\displaystyle 10\sqrt{6}\) - \(\displaystyle 12\sqrt{10}\)
3) \(\displaystyle -3\sqrt[6]{3}\) - \(\displaystyle 2\sqrt[6]{192}\) - \(\displaystyle \sqrt[6]{320}\)
= \(\displaystyle -7\sqrt[3]{6}\) - \(\displaystyle 2\sqrt[6]{5}\)
1) \(\displaystyle 2\sqrt[3]{6}\) - \(\displaystyle \sqrt[6]{6}\) + \(\displaystyle 3\sqrt[3]{6}\) - \(\displaystyle 3\sqrt[6]{384}\)
\(\displaystyle 3\sqrt[6]{384}\) = \(\displaystyle 2\sqrt[6]{6}\)
\(\displaystyle 2\sqrt[3]{6}\) - \(\displaystyle \sqrt[6]{6}\) + \(\displaystyle 3\sqrt[3]{6}\) - \(\displaystyle 2\sqrt[6]{6}\)
= \(\displaystyle 2\sqrt[6]{6}\)
2) \(\displaystyle \sqrt{15}\)(\(\displaystyle 2\sqrt{10}\) - \(\displaystyle 4\sqrt{6}\))
= \(\displaystyle 10\sqrt{6}\) - \(\displaystyle 12\sqrt{10}\)
3) \(\displaystyle -3\sqrt[6]{3}\) - \(\displaystyle 2\sqrt[6]{192}\) - \(\displaystyle \sqrt[6]{320}\)
= \(\displaystyle -7\sqrt[3]{6}\) - \(\displaystyle 2\sqrt[6]{5}\)