I'm trying to solve an Algebraic proof by using set identities. I'm not sure if I should have started off using the Double Complement Law so early, but it seemed like the only logical solution. Maybe someone else has a better solution.
For all sets A & B:
[MATH] (A^c \cup B^c)^c \cup (A \cap B^c) = A [/MATH]
So far I have:
[MATH](A^c \cup B^c)^c \cup (A \cap B^c)=(A^c[/MATH][MATH]^c \cap B^c[/MATH][MATH]^c)[/MATH][MATH]\cup (A \cap B^c)[/MATH] using DeMorgan's Law
[MATH]=(A \cap B) \cup (A \cap B^c)[/MATH] using Double Complement Law
I need to get to
[MATH]=(A^c)[/MATH][MATH]^c[/MATH] Double Complement Law
[MATH]A[/MATH]
or
[MATH]=(A^c[/MATH][MATH]^c)[/MATH] Double Complement Law
[MATH]A[/MATH]
For all sets A & B:
[MATH] (A^c \cup B^c)^c \cup (A \cap B^c) = A [/MATH]
So far I have:
[MATH](A^c \cup B^c)^c \cup (A \cap B^c)=(A^c[/MATH][MATH]^c \cap B^c[/MATH][MATH]^c)[/MATH][MATH]\cup (A \cap B^c)[/MATH] using DeMorgan's Law
[MATH]=(A \cap B) \cup (A \cap B^c)[/MATH] using Double Complement Law
I need to get to
[MATH]=(A^c)[/MATH][MATH]^c[/MATH] Double Complement Law
[MATH]A[/MATH]
or
[MATH]=(A^c[/MATH][MATH]^c)[/MATH] Double Complement Law
[MATH]A[/MATH]