Hello, Marissa!
1. Volume of a solid generated by revolving region: \(\displaystyle y\:=\:x^2,\;y\:=\:4x\,-\,x^2\)
Code:
* | *
|
* | * *(2,2)
| *:::::::*
* |*::::* *
* |:::* 4
-----------***----------*--
|0
*| *
Revolved about
what?
2. Arc length of graph of curve: \(\displaystyle \,y\:=\:\frac{x^4}{8}\,+\,\frac{1}{4x^2}\,\) over interval \(\displaystyle [1,\,2]\)
I assume you know the formula: \(\displaystyle \L\:L\;=\;\int^b_a\sqrt{1\,+\,\left(\frac{dy}{dx}\right)^2}\.dx\)
We have: \(\displaystyle \L\,y\:=\:\frac{1}{8}x^4\,+\,\frac{1}{4}x^{-2}\)
Then: \(\displaystyle \L\:\frac{dy}{dx}\:=\:\frac{1}{2}x^3\,-\,\frac{1}{2}x^{-3}\)
And: \(\displaystyle \L\;\left(\frac{dy}{dx}\right)^2\;=\;\left(\frac{1}{2}x^3 \,-\,\frac{1}{2}x^{-3}\right)^2 \;= \;\frac{1}{4}x^6\,-\,\frac{1}{2}\,+\,\frac{1}{4}x^{-6}\)
Hence: \(\displaystyle \L\;1\,+\,\left(\frac{dy}{dx}\right)^2\;=\;1\,+\,\frac{1}{4}x^6\,-\,\frac{1}{2}\,+\,\frac{1}{4}x^{-6}\)
. . . . . \(\displaystyle \L=\; \frac{1}{4}x^6\,+\,\frac{1}{2}\,+\,+\frac{1}{4}x^{-6}\;=\;\left(\frac{1}{2}x^3\,+\,\frac{1}{2}x^{-3}\right)^2\)
Therefore: \(\displaystyle \L\;\sqrt{1\,+\,\left(\frac{dy}{dx}\right)^2}\;=\;\sqrt{\left(\frac{1}{2}x^3\,+\,\frac{1}{2}x^{-3}\right)^2} \;= \;\frac{1}{2}x^3\,+\,\frac{1}{2}x^{-3}\)
Now you must evaluate: \(\displaystyle \L\:\frac{1}{2}\int^{\;\;\;2}_1\left(x^3\,+\,x^{-3}\right)\,dx\;\) . . . okay?