Win_odd Dhamnekar
Junior Member
- Joined
- Aug 14, 2018
- Messages
- 207
Toss a fair coin for 5 times. Describe the sample space [imath]\Omega.[/imath] We want to consider functions [imath]X : \omega \rightarrow \{-1,1\}.[/imath] Now describe the probability space [imath]( \Omega, \mathcal{F}_2, \mathbb{P}_2) [/imath] that arises if we want that only combinations of sets of the type [imath]A_i = \{ \omega \in \Omega :\text{ Number of heads} = i\}, i =\{ 0,1,2, 3,4,5 \}[/imath] should be events. How many [imath]\mathcal{F}_2 [/imath] measurable functions X with [imath]\mathbb{E}[X]=0 [/imath] are there?
My attempted answer:
The sets [imath]A_0 = \{T T T T\} ,A_1 = \{T T T H, T T H T, T H T T, H T T T \}, A_2 = \{T T H H, T H H T, H H T T, H T T H, T H T H, H T H T \}, A_3 = \{H H H T, H H T H, H T H H, T H H H\} A_4 = \{H H H H\}[/imath] defnes a partition of [imath]\Omega[/imath]
Now, what is [imath] \sigma[/imath]-algebra [imath]\mathcal{F}_2[/imath] generated by this partition of [imath]\Omega ?[/imath] and what is [imath]\mathbb{P}_2 ?[/imath]
Define [imath]\mathbb{P}_i= \mathbb{P}[A_i][/imath] ,then [imath]\mathbb{P}_0 =\frac{1}{16}, \mathbb{P}_1= \frac{4}{16}, \mathbb{P}_2= \frac{6}{16}, \mathbb{P}_3=\frac{4}{16}, \mathbb{P}_4=\frac{1}{16}[/imath]
For the set [imath]A_1[/imath], [imath]\sigma[/imath]-algebra [imath]\mathcal{F}[/imath] is [imath]\{\phi, \Omega, A_1, A^c\}[/imath]
Above all, How to answer this question?
My attempted answer:
The sets [imath]A_0 = \{T T T T\} ,A_1 = \{T T T H, T T H T, T H T T, H T T T \}, A_2 = \{T T H H, T H H T, H H T T, H T T H, T H T H, H T H T \}, A_3 = \{H H H T, H H T H, H T H H, T H H H\} A_4 = \{H H H H\}[/imath] defnes a partition of [imath]\Omega[/imath]
Now, what is [imath] \sigma[/imath]-algebra [imath]\mathcal{F}_2[/imath] generated by this partition of [imath]\Omega ?[/imath] and what is [imath]\mathbb{P}_2 ?[/imath]
Define [imath]\mathbb{P}_i= \mathbb{P}[A_i][/imath] ,then [imath]\mathbb{P}_0 =\frac{1}{16}, \mathbb{P}_1= \frac{4}{16}, \mathbb{P}_2= \frac{6}{16}, \mathbb{P}_3=\frac{4}{16}, \mathbb{P}_4=\frac{1}{16}[/imath]
For the set [imath]A_1[/imath], [imath]\sigma[/imath]-algebra [imath]\mathcal{F}[/imath] is [imath]\{\phi, \Omega, A_1, A^c\}[/imath]
Above all, How to answer this question?