Stat Question about independent events

dhs316

New member
Joined
Jan 27, 2010
Messages
25
Knowing the values of P(a) and P(b), how would would you calculate the following if a and b are independent events:

1.)P(a^b')
2.)P(a'^b')
3.)P[(avb)' ]
4.)P(a'^b)

^ = intersection
v = union

I know that P(a^b)=P(a)P(b), but i have no clue of the formula to achieve the above. Someone providing the formula or a good online resource that answers these would be helpful. Thanks.
 
Hwllo, dhs316!

Knowing the values of P(a)\displaystyle P(a) and P(b)\displaystyle P(b),
and knowing that a\displaystyle a and b\displaystyle b are independent events,
calculate the following:

(1)    P(ab)(2)    P(ab)(3)    P(ab)(4)    P(ab)\displaystyle (1)\;\;P(a \cap b ')\qquad (2)\;\;P(a' \cap b') \qquad (3)\;\;P(a\cup b)' \qquad (4)\;\;P(a' \cap b)

You are right!

\(\displaystyle \text{Since }a\text{ and }b\text{ are independent, then: }\:p(a \cap b) \:=\:p(a)\cdot P(b)\)

We also know the values of:   P(a)=1P(a)P(b)=1P(b)\displaystyle \text{We also know the values of: }\;\begin{array}{ccc}P(a') &=& 1 - P(a) \\ P(b') &=& 1 - P(b)\end{array}


(1)    P(ab)  =  P(a)P(b)  =  P(a)[1P(b)]\displaystyle (1)\;\;P(a \cap b') \;=\;P(a) \cdot P(b') \;=\;P(a)\cdot\left[1-P(b)\right]


(2)    P(ab)  =  P(a)P(b)  =  [1P(a)][1P(b)]\displaystyle (2)\;\;P(a'\cap b') \;=\;P(a')\cdot P(b') \;=\;\left[1-P(a)\right]\cdot\left[1-P(b)\right]


(3)    P(ab)  =  P(ab) by DeMorgan’s Law\displaystyle (3)\;\;P(a \cup b)' \;=\;P(a' \cap b')\:\text{ by DeMorgan's Law}
. . . This is the same as (2)\displaystyle \text{This is the same as (2)}


(4)    P(ab)  =  P(a)P(b)  =  [1P(a)]P(b)\displaystyle (4)\;\;P(a' \cap b) \;=\;P(a')\cdot P(b) \;=\;[1-P(a)]\cdot P(b)

 
Thank you. i never looked at solving these problems in the way that you did.
 
Top