Find the limit of \(\displaystyle \L \frac{5x+2}{x-1}\) when x approaches \(\displaystyle \infty\)
divide all terms in the numerator and denominator by x
\(\displaystyle \L \frac{5+\frac{2}{x}}{1-\frac{1}{x}}\)
The limit of \(\displaystyle \L \frac{2}{x} and \frac{1}{x}\) is 0..so the limit of
\(\displaystyle \L \frac{5x+2}{x-1} = \frac{5+\frac{2}{x}}{1-\frac{1}{x}} = \frac{5+0}{1-0} = 5\)
Have I done this correctly?
Thanks,
John.
divide all terms in the numerator and denominator by x
\(\displaystyle \L \frac{5+\frac{2}{x}}{1-\frac{1}{x}}\)
The limit of \(\displaystyle \L \frac{2}{x} and \frac{1}{x}\) is 0..so the limit of
\(\displaystyle \L \frac{5x+2}{x-1} = \frac{5+\frac{2}{x}}{1-\frac{1}{x}} = \frac{5+0}{1-0} = 5\)
Have I done this correctly?
Thanks,
John.