Hello, Trenters4325!
Assuming you're not familiar with DeMoivre's Theorem,
\(\displaystyle \l\l\)here's an elementary method . . .
How would I find:
2 + 3 \displaystyle \,\sqrt{2 + \sqrt{3}} 2 + 3 ?
Theorem:
If we have:
p + q 3 = r + s 3 \displaystyle p\,+\,q\sqrt{3} \:= \:r\,+\,s\sqrt{3} p + q 3 = r + s 3 , then:
p = r \displaystyle \,p\,=\,r\, p = r and
q = s \displaystyle \,q\,=\,s q = s
\displaystyle \;\; That is, the corresponding coefficients are equal.
Let
a + b 3 = 2 + 3 \displaystyle \,a\,+\,b\sqrt{3}\;=\;\sqrt{2\,+\,\sqrt{3}} a + b 3 = 2 + 3
Square both sides:
( a + b 3 ) 2 = ( 2 + s q r t 3 ) 2 \displaystyle \,(a\,+\,b\sqrt{3})^2\;=\;\left(\sqrt{2\,+\,sqrt{3}}\right)^2 ( a + b 3 ) 2 = ( 2 + s q r t 3 ) 2
\displaystyle \;\; then:
a 2 + 2 a b 3 + 3 b 2 = 2 + 3 \displaystyle \,a^2\,+\,2ab\sqrt{3}\,+\,3b^2\;=\;2\,+\,\sqrt{3} a 2 + 2 a b 3 + 3 b 2 = 2 + 3
Since we have:
( a 2 + 3 b 2 ) + ( 2 a b ) 3 = 2 + 3 \displaystyle \,\left(a^2\,+\,3b^2\right)\,+\,(2ab)\sqrt{3}\;=\;2\,+\,\sqrt{3} ( a 2 + 3 b 2 ) + ( 2 a b ) 3 = 2 + 3
\displaystyle \;\; then:
a 2 + 3 b 2 = 2 2 a b = 1 \displaystyle \,\begin{array}{cc}a^2\,+\,3b^2 \:=\:2\\ 2ab\:=\:1\end{array} a 2 + 3 b 2 = 2 2 a b = 1
Solve the system of equations . . .
Solve the second equation for
b : 2 a b = 1 ⇒ b = 1 2 a \displaystyle b:\;\;2ab\:=\:1\;\;\Rightarrow\;\;b\:=\:\frac{1}{2a}\; b : 2 a b = 1 ⇒ b = 2 a 1 [1]
Substitute into the first equation:
a 2 + 3 ( 1 2 a ) 2 = 2 ⇒ a 2 + 3 4 a 2 = 2 \displaystyle \;a^2\,+\,3\left(\frac{1}{2a}\right)^2\:=\:2\;\;\Rightarrow\;\;a^2\,+\,\frac{3}{4a^2}\:=\:2 a 2 + 3 ( 2 a 1 ) 2 = 2 ⇒ a 2 + 4 a 2 3 = 2
Multiply by
4 a 2 : 4 a 4 + 3 = 8 a 2 \displaystyle 4a^2:\;\;4a^4\,+\,3\:=\:8a^2 4 a 2 : 4 a 4 + 3 = 8 a 2
We have a "quadratic":
4 a 4 − 8 a 2 + 3 = 0 \displaystyle \,4a^4\,-\,8a^2\,+\,3\;=\;0 4 a 4 − 8 a 2 + 3 = 0
\displaystyle \;\; which factors:
( 2 a 2 − 1 ) ( 2 a 2 − 3 ) = 0 \displaystyle \,(2a^2\,-\,1)(2a^2\,-\,3)\;=\;0 ( 2 a 2 − 1 ) ( 2 a 2 − 3 ) = 0
and has two equations to solve:
2 a 2 − 1 = 0 ⇒ a 2 = 1 2 ⇒ a = ± 2 2 \displaystyle \;\;2a^2\,-\,1\:=\:0\;\;\Rightarrow\;\;a^2\:=\:\frac{1}{2}\;\;\Rightarrow\;\;a\:=\:\pm\frac{\sqrt{2}}{2} 2 a 2 − 1 = 0 ⇒ a 2 = 2 1 ⇒ a = ± 2 2
2 a 3 − 3 = 0 ⇒ a 2 = 3 2 ⇒ a = ± 6 2 \displaystyle \;\;2a^3\,-\,3\:=\:0\;\;\Rightarrow\;\;a^2\:=\:\frac{3}{2}\;\;\Rightarrow\;\;a\:=\:\pm\frac{\sqrt{6}}{2} 2 a 3 − 3 = 0 ⇒ a 2 = 2 3 ⇒ a = ± 2 6
Substitute into
[1] and get the corresponding b-values:
b = ± 2 2 , ± 6 6 \displaystyle \,b\:=\:\pm\frac{\sqrt{2}}{2},\;\pm\frac{\sqrt{6}}{6} b = ± 2 2 , ± 6 6
It seems that we have four possible answers:
2 2 + 2 2 3 = 2 + 6 2 \displaystyle \;\;\frac{\sqrt{2}}{2}\,+\,\frac{\sqrt{2}}{2}\sqrt{3}\:=\:\frac{\sqrt{2}\,+\,\sqrt{6}}{2} 2 2 + 2 2 3 = 2 2 + 6
\displaystyle \;\; -
2 2 − 2 2 3 = − 2 − 6 2 \displaystyle \frac{\sqrt{2}}{2}\,-\,\frac{\sqrt{2}}{2}\sqrt{3}\:=\:\frac{-\sqrt{2}\,-\,\sqrt{6}}{2} 2 2 − 2 2 3 = 2 − 2 − 6
6 2 + 6 6 3 = 6 2 + 18 6 = 6 2 + 3 2 6 = 6 2 + 2 2 \displaystyle \;\;\frac{\sqrt{6}}{2}\,+\,\frac{\sqrt{6}}{6}\sqrt{3}\:=\:\frac{\sqrt{6}}{2}\,+\,\frac{\sqrt{18}}{6}\:=\:\frac{\sqrt{6}}{2}\,+\,\frac{3\sqrt{2}}{6}\:=\:\frac {\sqrt{6}}{2}\,+\,\frac{\sqrt{2}}{2} 2 6 + 6 6 3 = 2 6 + 6 1 8 = 2 6 + 6 3 2 = 2 6 + 2 2
\displaystyle \;\; -
6 2 − 6 6 3 = \displaystyle \frac{\sqrt{6}}{2}\,-\,\frac{\sqrt{6}}{6}\sqrt{3}\:=\: 2 6 − 6 6 3 = -
6 2 − 18 6 = \displaystyle \frac{\sqrt{6}}{2}\,-\,\frac{\sqrt{18}}{6}\:=\: 2 6 − 6 1 8 = -
6 2 − 3 2 6 = \displaystyle \frac{\sqrt{6}}{2}\,-\,\frac{3\sqrt{2}}{6}\:=\: 2 6 − 6 3 2 = -
6 2 − 2 2 \displaystyle \frac{\sqrt{6}}{2}\,-\,\frac{\sqrt{2}}{2} 2 6 − 2 2
But we see that the last two are the same as the first two.
So, as expected, there are
two square roots of
2 + 3 \displaystyle 2\,+\,\sqrt{3} 2 + 3
\(\displaystyle \L\;\;\sqrt{2\,+\,\sqrt{3}}\;=\;\frac{\sqrt{2}\,+\,\sqrt{6}}{2},\;\frac{-\sqrt{2}\,-\,\sqrt{6}}{2}\)
.