Hello, Mathme!
You're wondering how this is done.
You should been shown the method before they threw this problem at you.
\(\displaystyle \L\frac{1}{(x\,-\,2)(x\,-\,5)}\;=\;\frac{-\frac{1}{3}}{x\,-\,2}\,+\,\frac{\frac{1}{3}}{x\,-\,5}\)
We conjecture that the fraction can be separated into two "partial fractions":
\(\displaystyle \L\;\;\;\frac{1}{(x\,-\,2)(x\,-\,5)}\;=\;\frac{A}{x\,-\,2} \,+ \,\frac{B}{x\,-\,5)\)
Multiply through by the LCD:
1=(x−5)A+(x−2)B
Now we select some "good' values for
x.
Let
x=2:1=(−3)A+(0)B⇒−3A=1⇒A=−31
Let
x=5:1=(0)A+(3)B⇒3B=1⇒B=31
And we've got it! . . .
\(\displaystyle \L\;\;\;\frac{1}{(x\,-\,2)(x\,-\,5)}\:=\;\frac{-\frac{1}{3}}{x\,-\,2} \,+\,\frac{\frac{1}{3}}{x\,-\,5} \;=\;\frac{1}{3}\left(\frac{-1}{x\,-\,2}\,+\,\frac{1}{x\,-\,5}\right)\)