Hello, Mathme!
You're wondering how this is done.
You should been shown the method before they threw this problem at you.
\(\displaystyle \L\frac{1}{(x\,-\,2)(x\,-\,5)}\;=\;\frac{-\frac{1}{3}}{x\,-\,2}\,+\,\frac{\frac{1}{3}}{x\,-\,5}\)
We conjecture that the fraction can be separated into two "partial fractions":
\(\displaystyle \L\;\;\;\frac{1}{(x\,-\,2)(x\,-\,5)}\;=\;\frac{A}{x\,-\,2} \,+ \,\frac{B}{x\,-\,5)\)
Multiply through by the LCD: \(\displaystyle \,1\;=\;(x\,-\,5)A \,+\,(x\,-\,2)B\)
Now we select some "good' values for \(\displaystyle x\).
Let \(\displaystyle x\,=\,2:\;\;1\;=\;(-3)A + (0)B\;\;\Rightarrow\;\;-3A\,=\,1\;\;\Rightarrow\;\;A\,=\,-\frac{1}{3}\)
Let \(\displaystyle x\,=\,5:\;\;1\;=\;(0)A\,+\,(3)B\;\;\Rightarrow\;\;3B\,=\,1\;\;\Rightarrow\;\;B\,=\,\frac{1}{3}\)
And we've got it! . . .
\(\displaystyle \L\;\;\;\frac{1}{(x\,-\,2)(x\,-\,5)}\:=\;\frac{-\frac{1}{3}}{x\,-\,2} \,+\,\frac{\frac{1}{3}}{x\,-\,5} \;=\;\frac{1}{3}\left(\frac{-1}{x\,-\,2}\,+\,\frac{1}{x\,-\,5}\right)\)