VictimOfCalculus
New member
- Joined
- Dec 26, 2010
- Messages
- 2
Thank you!
Could I throw another one out there? It's similar, but I can't get it to work so smoothly;
Consider the initial value problem y[sup:3qn5fgrb]I[/sup:3qn5fgrb]=1-y/x, y(1)=1
Verify that y=(x[sup:3qn5fgrb]2[/sup:3qn5fgrb]+1)/(2x) is the solution to this IVP
So I have;
y=(x[sup:3qn5fgrb]2[/sup:3qn5fgrb]+1)/(2x)
y[sup:3qn5fgrb]I[/sup:3qn5fgrb]=(2x)(2x)-(x2+1)(2)/(2x)[sup:3qn5fgrb]2[/sup:3qn5fgrb]
y[sup:3qn5fgrb]I[/sup:3qn5fgrb]=4x[sup:3qn5fgrb]2[/sup:3qn5fgrb]-2x[sup:3qn5fgrb]2[/sup:3qn5fgrb]+2/4x[sup:3qn5fgrb]2[/sup:3qn5fgrb]=(x[sup:3qn5fgrb]2[/sup:3qn5fgrb]+1)/2x[sup:3qn5fgrb]2[/sup:3qn5fgrb]=y/x
So I'm missing the (1-) part
The second part I think I've got;
y(1)=(1[sup:3qn5fgrb]2[/sup:3qn5fgrb]+1)/(2(1))=1 (Satisfies initial condition)
Thank you! =]
-Amy
Could I throw another one out there? It's similar, but I can't get it to work so smoothly;
Consider the initial value problem y[sup:3qn5fgrb]I[/sup:3qn5fgrb]=1-y/x, y(1)=1
Verify that y=(x[sup:3qn5fgrb]2[/sup:3qn5fgrb]+1)/(2x) is the solution to this IVP
So I have;
y=(x[sup:3qn5fgrb]2[/sup:3qn5fgrb]+1)/(2x)
y[sup:3qn5fgrb]I[/sup:3qn5fgrb]=(2x)(2x)-(x2+1)(2)/(2x)[sup:3qn5fgrb]2[/sup:3qn5fgrb]
y[sup:3qn5fgrb]I[/sup:3qn5fgrb]=4x[sup:3qn5fgrb]2[/sup:3qn5fgrb]-2x[sup:3qn5fgrb]2[/sup:3qn5fgrb]+2/4x[sup:3qn5fgrb]2[/sup:3qn5fgrb]=(x[sup:3qn5fgrb]2[/sup:3qn5fgrb]+1)/2x[sup:3qn5fgrb]2[/sup:3qn5fgrb]=y/x
So I'm missing the (1-) part
The second part I think I've got;
y(1)=(1[sup:3qn5fgrb]2[/sup:3qn5fgrb]+1)/(2(1))=1 (Satisfies initial condition)
Thank you! =]
-Amy