57. Find the volume of the solid that results when the region enclosed by y = cos x, y = sin x, x = 0, and x = pi/4 is revolved about the x-axis.
\(\displaystyle \L\\\int{cos^{2}(x)-sin^{2}(x)}dx\)
\(\displaystyle \L\\\int{[(1/2)(1+cos(2x)] - [(1/2)(1-cos(2x)]}dx\)
(1/2)\(\displaystyle \L\\\int{cos(2x)}dx\)
(1/2)sin (2x)
1/2
35. \(\displaystyle \L\\\int{tan^{4}(x)sec(x)}dx\)
\(\displaystyle \L\\\int{cos^{2}(x)-sin^{2}(x)}dx\)
\(\displaystyle \L\\\int{[(1/2)(1+cos(2x)] - [(1/2)(1-cos(2x)]}dx\)
(1/2)\(\displaystyle \L\\\int{cos(2x)}dx\)
(1/2)sin (2x)
1/2
35. \(\displaystyle \L\\\int{tan^{4}(x)sec(x)}dx\)