\(\displaystyle \L\\\int{(\frac{dx}{x^{4}sqrt{x^{2}+3}}})\)
\(\displaystyle \L\\x=sqrt{3}tan{\theta}\)
\(\displaystyle \L\\{\sqrt{3}sec^{2}{\theta}d{\theta}\)
\(\displaystyle \L\\{\theta}=tan^{-1}(\frac{x}{\sqrt{3}})\)
\(\displaystyle \L\\\\\int{(\frac{sqrt{3}sec^{2}{\theta}d{\theta}}{{9}{tan^{4}{\theta}sqrt{3sec^{2}{\theta}}})\)
\(\displaystyle \L\\\\\frac{1}{9}\int{(\frac{sec{\theta}}{tan^{4}{\theta}}})d{\theta}\)
\(\displaystyle \L\\x=sqrt{3}tan{\theta}\)
\(\displaystyle \L\\{\sqrt{3}sec^{2}{\theta}d{\theta}\)
\(\displaystyle \L\\{\theta}=tan^{-1}(\frac{x}{\sqrt{3}})\)
\(\displaystyle \L\\\\\int{(\frac{sqrt{3}sec^{2}{\theta}d{\theta}}{{9}{tan^{4}{\theta}sqrt{3sec^{2}{\theta}}})\)
\(\displaystyle \L\\\\\frac{1}{9}\int{(\frac{sec{\theta}}{tan^{4}{\theta}}})d{\theta}\)