1. lim (1-1/4)*(1-1/9)*...*(1-1/n^2) with n->inf
I think the above is as follows:
. . . . .\(\displaystyle \displaystyle{ \lim_{n\, \rightarrow\, \infty} \, \left[ \left(1\, -\, \frac{1}{4}\right) \cdot \left(1\, -\, \frac{1}{9}\right) \cdot\, ...\, \cdot \left(1\, -\, \frac{1}{n^2}\right) \right] }\)
Convert the subtractions into fractions:
. . . . .\(\displaystyle \displaystyle{ 1\, -\, \frac{1}{k^2}\, =\, \frac{k^2\, -\, 1}{k^2}\, =\, \frac{(k\, -\, 1)(k\, +\, 1)}{k^2} }\)
Then note that, at each stage (other than at the "ends"), the k - 1 will cancel with the denominator to the left and the k + 1 will cancel with the denominator to the right. What will be left?
2. lim(√(n^2+2n+5)-n) , n-> inf
Use the customary "trick" of multiplying, top and bottom, by the conjugate:
. . . . .\(\displaystyle \displaystyle{ \left(\frac{\sqrt{n^2\, +\, 2n\, +\, 5\, } \, -\, n}{1}\right)\left(\frac{\sqrt{n^2\, +\, 2n\, +\, 5\, }\, +\, n}{\sqrt{n^2\, +\, 2n\, +\, 5\, }\, +\, n}\right) }\)
Then simplify and take the limit.
![Wink ;) ;)]()