solving for x

andy849

New member
Joined
Jan 31, 2010
Messages
4
In a diagram of circle, chords AB and CD
intersect at E. If AE = 3, EB = 4, CE = x, and ED = x - 4, what is the
value of x?

how do I start this problem?
 
Hello, andy849!

In a diagram of a circle, chords AB and CD intersect at E.\displaystyle \text{In a diagram of a circle, chords }AB \text{ and }CD\text{ intersect at }E.

If AE=3,  EB=4,  CE=x,  ED=x4, what is the value of x?\displaystyle \text{If }\,AE \,=\, 3,\; EB \,=\, 4,\; CE \,=\, x,\;ED \,=\, x - 4,\,\text{ what is the value of }x\,?

Theorem: If two chords intersect inside a circle, the products of their segments are equal.


So we have:   x(x4)=34x24x12=0\displaystyle \text{So we have: }\;x(x-4) \:=\:3\cdot4 \quad\Rightarrow\quad x^2 - 4x - 12 \:=\:0

Hence:   (x6)(x+2)=0x=6,    ///2\displaystyle \text{Hence: }\;(x-6)(x+2) \:=\:0 \quad\Rightarrow\quad x \:=\:6,\;\rlap{\;///}-2


Therefore: x=6\displaystyle \text{Therefore: }\:x \,=\,6

 
Top