I'm stuck on this problem. (4)/(x+2) - (4)/(x) __________________ = 1 2
A asil223 New member Joined Mar 2, 2010 Messages 4 Jan 19, 2011 #1 I'm stuck on this problem. (4)/(x+2) - (4)/(x) __________________ = 1 2
D Denis Senior Member Joined Feb 17, 2004 Messages 1,707 Jan 19, 2011 #2 asil223 said: I'm stuck on this problem. (4)/(x+2) - (4)/(x) __________________ = 1 2 Click to expand... Start this way: (4)/(x+2) - (4)/(x) = 2 Then use LCM: [4x - 4(x + 2)] / [x(x + 2)] = 2 OK?
asil223 said: I'm stuck on this problem. (4)/(x+2) - (4)/(x) __________________ = 1 2 Click to expand... Start this way: (4)/(x+2) - (4)/(x) = 2 Then use LCM: [4x - 4(x + 2)] / [x(x + 2)] = 2 OK?
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 Jan 19, 2011 #3 Hello, asil223! Is the problem stated correctly? I'm getting complex answers. \(\displaystyle \displaystyle \dfrac{\dfrac{4}{x+2} - \dfrac{4}{x}}{2} \;=\;1\) Click to expand... \(\displaystyle \text{Multiply by 2: }\;\frac{4}{x+2} - \frac{4}{x} \;=\;2\) \(\displaystyle \text{Multiply by }{x(x+2)\!: \;\;4x - 4(x+2) \;=\;2x(x+2) \quad\Rightarrow\quad 4x - 4x - 8 \:=\:2x^2+4x\) . . . . . . . . . . . . . . . . \(\displaystyle 2x^2 + 4x + 8 \:=\:0 \quad\Rightarrow\quad x^2 + 2x + 4 \:=\:0\) \(\displaystyle \text{Quadratic Formula: }\;x \;=\;\dfrac{-2 \pm \sqrt{-12}}{2} \;=\; \dfrac{-2 \pm2i\sqrt{3}}{2} \;=\;-1 \pm i\sqrt{3}\)
Hello, asil223! Is the problem stated correctly? I'm getting complex answers. \(\displaystyle \displaystyle \dfrac{\dfrac{4}{x+2} - \dfrac{4}{x}}{2} \;=\;1\) Click to expand... \(\displaystyle \text{Multiply by 2: }\;\frac{4}{x+2} - \frac{4}{x} \;=\;2\) \(\displaystyle \text{Multiply by }{x(x+2)\!: \;\;4x - 4(x+2) \;=\;2x(x+2) \quad\Rightarrow\quad 4x - 4x - 8 \:=\:2x^2+4x\) . . . . . . . . . . . . . . . . \(\displaystyle 2x^2 + 4x + 8 \:=\:0 \quad\Rightarrow\quad x^2 + 2x + 4 \:=\:0\) \(\displaystyle \text{Quadratic Formula: }\;x \;=\;\dfrac{-2 \pm \sqrt{-12}}{2} \;=\; \dfrac{-2 \pm2i\sqrt{3}}{2} \;=\;-1 \pm i\sqrt{3}\)