Solving equation of extrema with two variables

Hello, quazzimotto!

Find the extrema: \(\displaystyle \:h(x,y) \:=\:x^2\,-\,y^2\,-\,3xy\)

Set the two partial derivative equal to zero and solve:

.\(\displaystyle \begin{array}{ccccc} h_x & \,=\, & 2x\,-\,3y & \,=\, & 0 \\ h_y & = & -2y - 3x & = & 0\end{array}\;\;\Rightarrow\;\;x\,=\,0,\:y\,=\,0\)

Second Partials Test:
. . \(\displaystyle \begin{array}{ccc}h_{xx} & \,=\, & 2 \\ h_{yy} & = & -2 \\ h_{xy} & = & -3\end{array}\)

\(\displaystyle D \:=\:(h_{xx})(h_{yy}) - (h_{xy})^2\:=\:(2)(-2)\,-\,(-3)^2\:=\:-13\;\) negative


Therefore, there is a saddle point at \(\displaystyle (0,0,0)\)

 
Top