Solving equation of extrema with two variables

Hello, quazzimotto!

Find the extrema: h(x,y)=x2y23xy\displaystyle \:h(x,y) \:=\:x^2\,-\,y^2\,-\,3xy

Set the two partial derivative equal to zero and solve:

.hx=2x3y=0hy=2y3x=0        x=0,y=0\displaystyle \begin{array}{ccccc} h_x & \,=\, & 2x\,-\,3y & \,=\, & 0 \\ h_y & = & -2y - 3x & = & 0\end{array}\;\;\Rightarrow\;\;x\,=\,0,\:y\,=\,0

Second Partials Test:
. . hxx=2hyy=2hxy=3\displaystyle \begin{array}{ccc}h_{xx} & \,=\, & 2 \\ h_{yy} & = & -2 \\ h_{xy} & = & -3\end{array}

\(\displaystyle D \:=\:(h_{xx})(h_{yy}) - (h_{xy})^2\:=\:(2)(-2)\,-\,(-3)^2\:=\:-13\;\) negative


Therefore, there is a saddle point at (0,0,0)\displaystyle (0,0,0)

 
Top