For all 3 problems the following is true: \(\displaystyle \sin\alpha+\cos\alpha=A\); \(\displaystyle |A|\leq\sqrt2\).
1) \(\displaystyle \sin\alpha*\cos\alpha=\) (got the first one) \(\displaystyle =\frac{(\sin\alpha+\cos\alpha)^2-1}{2}=\frac{A^2-1}{2}\)
2) \(\displaystyle \vline\cos\alpha - \sin\alpha\vline=\) :?:
3) \(\displaystyle \sin^4{\alpha}+\cos^4{\alpha}=\) :?:
1) \(\displaystyle \sin\alpha*\cos\alpha=\) (got the first one) \(\displaystyle =\frac{(\sin\alpha+\cos\alpha)^2-1}{2}=\frac{A^2-1}{2}\)
2) \(\displaystyle \vline\cos\alpha - \sin\alpha\vline=\) :?:
3) \(\displaystyle \sin^4{\alpha}+\cos^4{\alpha}=\) :?: