Consider the equation [math]z^2+az+b=0[/math]in the set of complex numbers, where a and b are real numbers. How many pairs (a, b) exist such that the equation has two solutions z1 and z2 satisfying [math]z_1-3=(1-|z_2|)i[/math]I tried Isolating [math]z_1=3+(1-|z_2|)i[/math]Then I think z1 and z2 are complex solutions so z2 will be [math]z_2=3-(1-|z_2|)i[/math]I used Viète [math]z_1z_2=b=9+(1-|z_2|)^2[/math][math]z_1+z_2=-a=3<=>a=-3[/math]I then set [math]z_1=a+bi[/math][math]z_2=c+di[/math]so [math]b=10-2\sqrt{c^2+d^2}+c^2+d^2[/math]Subtitute[math]z_1,z_2[/math] into [math]z_1-3=(1-|z_2|)i[/math][math]<=>a^2+b^2=10-2\sqrt{c^2+d^2}+c^2+d^2<=>a^2+b^2=b<=>b^2-b+9=0,(a=-3)[/math]I solved this and it has no real solutions so after all I messed up the whole process,Please help me^^