\(\displaystyle \frac{A}{r^2} - \frac{B \cdot n \cdot r^{n - 1}}{r^{2n}} \;=\; 0\)
\(\displaystyle r^2 \cdot \left( \frac{A}{r^2} - \frac{B \cdot n \cdot r^{n - 1}}{r^{2n}} \right) \;=\; r^2 \cdot 0\)
\(\displaystyle \frac{r^2}{1} \cdot \frac{A}{r^2} - \frac{r^2}{1} \cdot \frac{B \cdot n \cdot r^{n - 1}}{r^{2n}} \;=\; 0\)
\(\displaystyle A - \frac{B \cdot n \cdot r^{n - 1} \cdot r^2}{r^{2n}} \;=\; 0\)
Can you use the property above to multiply the two powers of r in the numerator together?
Then use the property above for a ratio of powers, to get the single power of r^(1 - n) shown in my post above.
Gosh, did I just join the "Elite" members' club ? (Finally, I'm just as good as Denis.)