Here's how I would work it...begin with the augmented matrix:
[MATH]\left[\begin{array}{ccc|c}2 & 2 & 2 & 0 \\ -2 & 5 & 2 & 1 \\ 8 & 1 & 4 & -1 \end{array}\right][/MATH]
[MATH]\frac{1}{2}R_1[/MATH]
[MATH]\left[\begin{array}{ccc|c}1 & 1 & 1 & 0 \\ -2 & 5 & 2 & 1 \\ 8 & 1 & 4 & -1 \end{array}\right][/MATH]
[MATH]2R_1+R_2[/MATH] and [MATH]-8R_1+R_3[/MATH]
[MATH]\left[\begin{array}{ccc|c}1 & 1 & 1 & 0 \\ 0 & 7 & 4 & 1 \\ 0 & -7 & -4 & -1 \end{array}\right][/MATH]
[MATH]\frac{1}{7}R_2[/MATH]
[MATH]\left[\begin{array}{ccc|c}1 & 1 & 1 & 0 \\ 0 & 1 & \frac{4}{7} & \frac{1}{7} \\ 0 & -7 & -4 & -1 \end{array}\right][/MATH]
[MATH]-R_2+R_1[/MATH] and [MATH]7R_2+R_3[/MATH]
[MATH]\left[\begin{array}{ccc|c}1 & 0 & \frac{3}{7} & -\frac{1}{7} \\ 0 & 1 & \frac{4}{7} & \frac{1}{7} \\ 0 & 0 & -8 & 0 \end{array}\right][/MATH]
[MATH]-8R_3[/MATH]
[MATH]\left[\begin{array}{ccc|c}1 & 0 & \frac{3}{7} & -\frac{1}{7} \\ 0 & 1 & \frac{4}{7} & \frac{1}{7} \\ 0 & 0 & 1 & 0 \end{array}\right][/MATH]
[MATH]-\frac{3}{7}R_3+R_1[/MATH] and [MATH]-\frac{4}{7}R_3+R_2[/MATH]
[MATH]\left[\begin{array}{ccc|c}1 & 0 & 0 & -\frac{1}{7} \\ 0 & 1 & 0 & \frac{1}{7} \\ 0 & 0 & 1 & 0 \end{array}\right][/MATH]
And so we conclude:
[MATH]\left(x_1,x_2,x_3\right)=\left(-\frac{1}{7},\frac{1}{7},0\right)[/MATH]