Solve 9^2x = 27^(1 - x) with logs

Re: 9^2x = 27^(1-x)

\(\displaystyle 3^{4x} = 9^{2x} = 27^{\left( {1 - x} \right)} = 3^{\left( {3 - 3x} \right)}\)
 
Hello, JAsh!

Solve with logs: .\(\displaystyle 9^{2x} \:= \:27^{1-x}\)

If we must use logs . . .

\(\displaystyle \text{Take logs: }\;\log\left(9^{2x}\right) \:=\:\log\left(27^{1-x}\right) \quad\Rightarrow\quad 2x\!\cdot\!\log(9) \:=\:(1-x)\!\cdot\!\log(27)\)

. . \(\displaystyle 2x\!\cdot\!\log(9) \:=\:\log(27) - x\!\cdot\!\log(27) \quad\Rightarrow\quad 2x\!\cdot\!\log(9) + x\!\cdot\!\log(27) \:=\:\log(27)\)

\(\displaystyle \text{Factor: }\;x\left[2\log(9) + \log(27)\right] \:=\:\log(27) \quad\Rightarrow\quad x \;=\;\frac{\log(27)}{2\!\cdot\!\log(9) + \log(27)}\)

\(\displaystyle \text{Crank it through your calculator: }\;x \;=\;0.428571428571\hdots \;=\;\boxed{\frac{3}{7}}\)


~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

What pka was telling you: we don't need logs for this problem.

. . \(\displaystyle 9^{2x} \;=\;\left(3^{2x}\right)^2 \;=\;3^{4x}\)

. . \(\displaystyle 27^{1-x} \;=\;\left(3^3}\right)^{1-x} \;=\;3^{3(1-x)} \;=\;3^{3-3x}\)

\(\displaystyle \text{The equation becomes: }\;3^{4x} \:=\:3^{3-3x}\)

Since the bases are equal, we can equate the exponents.

. . \(\displaystyle 4x \:=\:3-3x\quad\Rightarrow\quad 7x \:=\:3\quad\Rightarrow\quad x \:=\:\frac{3}{7}\)

 
Top