solve with logs: 9^2x = 27^(1-x) please help!
J JAsh New member Joined Jun 17, 2008 Messages 9 Jun 17, 2008 #1 solve with logs: 9^2x = 27^(1-x) please help!
pka Elite Member Joined Jan 29, 2005 Messages 11,984 Jun 17, 2008 #2 Re: 9^2x = 27^(1-x) \(\displaystyle 3^{4x} = 9^{2x} = 27^{\left( {1 - x} \right)} = 3^{\left( {3 - 3x} \right)}\)
Re: 9^2x = 27^(1-x) \(\displaystyle 3^{4x} = 9^{2x} = 27^{\left( {1 - x} \right)} = 3^{\left( {3 - 3x} \right)}\)
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 Jun 17, 2008 #3 Hello, JAsh! Solve with logs: .\(\displaystyle 9^{2x} \:= \:27^{1-x}\) Click to expand... If we must use logs . . . \(\displaystyle \text{Take logs: }\;\log\left(9^{2x}\right) \:=\:\log\left(27^{1-x}\right) \quad\Rightarrow\quad 2x\!\cdot\!\log(9) \:=\1-x)\!\cdot\!\log(27)\) . . \(\displaystyle 2x\!\cdot\!\log(9) \:=\:\log(27) - x\!\cdot\!\log(27) \quad\Rightarrow\quad 2x\!\cdot\!\log(9) + x\!\cdot\!\log(27) \:=\:\log(27)\) \(\displaystyle \text{Factor: }\;x\left[2\log(9) + \log(27)\right] \:=\:\log(27) \quad\Rightarrow\quad x \;=\;\frac{\log(27)}{2\!\cdot\!\log(9) + \log(27)}\) \(\displaystyle \text{Crank it through your calculator: }\;x \;=\;0.428571428571\hdots \;=\;\boxed{\frac{3}{7}}\) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ What pka was telling you: we don't need logs for this problem. . . \(\displaystyle 9^{2x} \;=\;\left(3^{2x}\right)^2 \;=\;3^{4x}\) . . \(\displaystyle 27^{1-x} \;=\;\left(3^3}\right)^{1-x} \;=\;3^{3(1-x)} \;=\;3^{3-3x}\) \(\displaystyle \text{The equation becomes: }\;3^{4x} \:=\:3^{3-3x}\) Since the bases are equal, we can equate the exponents. . . \(\displaystyle 4x \:=\:3-3x\quad\Rightarrow\quad 7x \:=\:3\quad\Rightarrow\quad x \:=\:\frac{3}{7}\)
Hello, JAsh! Solve with logs: .\(\displaystyle 9^{2x} \:= \:27^{1-x}\) Click to expand... If we must use logs . . . \(\displaystyle \text{Take logs: }\;\log\left(9^{2x}\right) \:=\:\log\left(27^{1-x}\right) \quad\Rightarrow\quad 2x\!\cdot\!\log(9) \:=\1-x)\!\cdot\!\log(27)\) . . \(\displaystyle 2x\!\cdot\!\log(9) \:=\:\log(27) - x\!\cdot\!\log(27) \quad\Rightarrow\quad 2x\!\cdot\!\log(9) + x\!\cdot\!\log(27) \:=\:\log(27)\) \(\displaystyle \text{Factor: }\;x\left[2\log(9) + \log(27)\right] \:=\:\log(27) \quad\Rightarrow\quad x \;=\;\frac{\log(27)}{2\!\cdot\!\log(9) + \log(27)}\) \(\displaystyle \text{Crank it through your calculator: }\;x \;=\;0.428571428571\hdots \;=\;\boxed{\frac{3}{7}}\) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ What pka was telling you: we don't need logs for this problem. . . \(\displaystyle 9^{2x} \;=\;\left(3^{2x}\right)^2 \;=\;3^{4x}\) . . \(\displaystyle 27^{1-x} \;=\;\left(3^3}\right)^{1-x} \;=\;3^{3(1-x)} \;=\;3^{3-3x}\) \(\displaystyle \text{The equation becomes: }\;3^{4x} \:=\:3^{3-3x}\) Since the bases are equal, we can equate the exponents. . . \(\displaystyle 4x \:=\:3-3x\quad\Rightarrow\quad 7x \:=\:3\quad\Rightarrow\quad x \:=\:\frac{3}{7}\)