solve 3^(2x^2+1) - 3^(x^2+2) = 3^(x^2) - 3 and

Re: help with exponentials

oded244 said:

For the first one, since the bases are the same, concentrate on the exponents

2x2+1(x2+2)=x21\displaystyle 2x^{2}+1-(x^{2}+2)=x^{2}-1

What do you get?.
 
Re: help with exponentials

hmm.. i see.
why can't i put a t=9^x ? im getting +-0.5 when i do that.
 
oded244 said:
why can't i put a t=9^x ? im getting +-0.5 when i do that.
Um... what...? What do you mean by "putting a t = 9[sup:30pyum36]x[/sup:30pyum36]"? Putting it where? Who said you can't? (I don't see any previous reference to this.) For what are you "getting 0.5"?

Please reply with clarification, showing all of your work and reasoning. Thank you! :D

Eliz.
 
Re: help with exponentials

that's what i did for the first one:

3^x^2=t
t^2*3-t*3^2=t-3
3t^2-10t+3=0
t=3 t=1/3

3^x^2=3 .....= 1/2
 
Re: help with exponentials

3^x^2=3 .....= 1/2

Are you saying that x = 1/2 is a solution? Have you tried plugging that back in to the original equation to check it?

If 3^(x^2) = 3^1, then x^2 = 1. Therefore,
x = +/- 1
 
Re: help with exponentials

Hello, oded244!

32x2+13x2+2  =  3x23\displaystyle 3^{2x^2+1} - 3^{x^2+2} \;=\;3^{x^2} - 3

We have:   32x2+13x2+23x2+3  =  0\displaystyle \text{We have: }\;3^{2x^2+1} - 3^{x^2+2} - 3^{x^2} + 3 \;=\;0

Factor:   3x2+2(3x211)3(3x211)  =  0\displaystyle \text{Factor: }\;3^{x^2+2}\left(3^{x^2-1} - 1\right) - 3\left(3^{x^2-1} - 1\right) \;=\;0

Factor:   (3x2+23)(3x211)  =  0\displaystyle \text{Factor: }\;\left(3^{x^2+2} - 3\right)\,\left(3^{x^2-1} - 1\right) \;=\;0


We have:   3x2+23=03x2+2=31\displaystyle \text{We have: }\;3^{x^2+2} - 3 \:=\:0 \quad\Rightarrow\quad 3^{x^2+2}\:=\:3^1

. . \(\displaystyle x^2+2 \:=\:1 \quad\Rightarrow\quad x^2\:=\:-1\quad\hdots\text{ no real roots}\)


And we have:   3x211=03x21=13x21=30\displaystyle \text{And we have: }\;3^{x^2-1}-1 \:=\:0 \quad\Rightarrow\quad 3^{x^2-1} \:=\:1 \quad\Rightarrow\quad 3^{x^2-1} \:=\:3^0

. . x21=0x2=1x=±1\displaystyle x^2-1 \:=\:0\quad\Rightarrow\quad x^2 \:=\:1 \quad\Rightarrow\quad\boxed{ x \:=\:\pm 1}

 
Re: help with exponentials

Hello again, oded244!

The second problem is a killer . . .


4x32x12  =  32x+1222x1\displaystyle 4^x - 3^{\frac{2x-1}{2}} \;=\;3^{\frac{2x+1}{2}} - 2^{2x-1}

We have:   (22)x+22x1  =  32x+12+32x1222x+22x1  =  3x+12+3x12\displaystyle \text{We have: }\;\left(2^2\right)^x + 2^{2x-1} \;=\;3^{\frac{2x+1}{2}} + 3^{\frac{2x-1}{2}} \quad\Rightarrow\quad 2^{2x} + 2^{2x-1} \;=\;3^{x + \frac{1}{2}} + 3^{x - \frac{1}{2}}

Factor:   22x1(2+1)  =  3x12(3+1)22x13  =  3x1222\displaystyle \text{Factor: }\;2^{2x-1}(2 + 1) \;=\;3^{x-\frac{1}{2}}(3 + 1) \quad\Rightarrow\quad 2^{2x-1}\cdot 3 \;=\;3^{x-\frac{1}{2}}\cdot 2^2

Divide by 22 ⁣ ⁣3 ⁣:    22x3  =  3x32\displaystyle \text{Divide by }2^2\!\cdot\!3\!:\;\;2^{2x-3} \;=\;3^{x-\frac{3}{2}} .[1]


Take logs:   ln(22x3)  =  ln(3x32)(2x3) ⁣log(2)  =  (x32) ⁣ ⁣log(3)\displaystyle \text{Take logs: }\;\ln\left(2^{2x-3}\right) \;=\;\ln\left(3^{x-\frac{3}{2}}\right) \quad\Rightarrow\quad (2x-3)\!\cdot\log(2) \;=\;\left(x - \frac{3}{2}\right)\!\cdot\!\log(3)

. . 2xln(2)3ln(2)  =  xln(3)32ln(3)2xln(2)xln(3)  =  3ln(2)32ln(3)\displaystyle 2x\cdot\ln(2) - 3\cdot\ln(2) \;=\;x\cdot\ln(3) - \frac{3}{2}\cdot\ln(3) \quad\Rightarrow\quad 2x\cdot\ln(2) - x\cdot\ln(3) \;=\;3\cdot\ln(2) - \frac{3}{2}\cdot\ln(3)

Factor:   x[2 ⁣ln(2)ln(3)]  =  3 ⁣ ⁣ln(2)32 ⁣ ⁣ln(3)\displaystyle \text{Factor: }\;x\left[2\!\cdot\ln(2) - \ln(3)\right] \;=\;3\!\cdot\!\ln(2) - \frac{3}{2}\!\cdot\!\ln(3)

Therefore:   x  =  3ln(2)32ln(3)2ln(2)ln(3)\displaystyle \text{Therefore: }\;x \;=\;\frac{3\ln(2) - \frac{3}{2}\ln(3)}{2\ln(2) - \ln(3)}


~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~


On my calculator, the answer came out: 1.500000001\displaystyle \text{On my calculator, the answer came out: }1.500000001

. . . . and it turns out that x=32 is indeed the solution!\displaystyle \text{and it turns out that }x = \frac{3}{2} \text{ is indeed the solution!}

If the answer is rational, could we have found the answer without resorting to logs?\displaystyle \text{If the answer is }rational\text{, could we have found the answer without resorting to logs?}


Well, there was one opportunity . . . back at \displaystyle \text{Well, there was one opportunity . . . back at } [1]

. . We had:   22x3=3x32\displaystyle \text{We had: }\;2^{2x-3} \:=\:3^{x-\frac{3}{2}}


We could have seen that the equation holds if both exponents were zero.\displaystyle \text{We could have }seen\text{ that the equation holds if both exponents were zero.}

. . But I didn’t see it . . . did you?\displaystyle \text{But }I\text{ didn't see it . . . did you?}

 
Top