$sin^2x cos2x dx Right this is the problem, see my scanned paper.
R Riazy New member Joined Jan 15, 2011 Messages 18 Jan 23, 2011 #1 $sin^2x cos2x dx Right this is the problem, see my scanned paper.
mmm4444bot Super Moderator Joined Oct 6, 2005 Messages 10,962 Jan 23, 2011 #2 Your result in green is correct. Is this confirmation the reason for your post? I don't see any question.
Your result in green is correct. Is this confirmation the reason for your post? I don't see any question.
R Riazy New member Joined Jan 15, 2011 Messages 18 Jan 24, 2011 #3 They right answer should be the green, but I didnt get there, if someone could help me get there i would really b grateful
They right answer should be the green, but I didnt get there, if someone could help me get there i would really b grateful
D Deleted member 4993 Guest Jan 24, 2011 #4 ∫sin2(x).cos(2x)dx\displaystyle \int sin^2(x).cos(2x) dx∫sin2(x).cos(2x)dx we know: sin2(x) = 1−cos(2x)2\displaystyle sin^2(x)\ = \ \frac{1-cos(2x)}{2}sin2(x) = 21−cos(2x) and cos2(2x) = 1+cos(4x)2\displaystyle cos^2(2x)\ = \ \frac{1+ cos(4x)}{2}cos2(2x) = 21+cos(4x) then ∫sin2(x).cos(2x)dx\displaystyle \int sin^2(x).cos(2x) dx∫sin2(x).cos(2x)dx = ∫1−cos(2x)2⋅cos(2x)dx\displaystyle = \ \int \frac{1-cos(2x)}{2} \cdot cos(2x) dx= ∫21−cos(2x)⋅cos(2x)dx = 12∫[cos(2x) − cos2(2x)]dx\displaystyle = \ \frac{1}{2}\int [cos(2x) \ - \ cos^2(2x)] dx= 21∫[cos(2x) − cos2(2x)]dx = 14sin(2x) −12∫[cos2(2x)]dx\displaystyle = \ \frac{1}{4}sin(2x) \ - \frac{1}{2}\int [cos^2(2x)] dx= 41sin(2x) −21∫[cos2(2x)]dx = 14sin(2x) −12∫1+cos(4x)2dx\displaystyle = \ \frac{1}{4}sin(2x) \ - \frac{1}{2}\int \frac{1+ cos(4x)}{2} dx= 41sin(2x) −21∫21+cos(4x)dx Continue and finish it.....
∫sin2(x).cos(2x)dx\displaystyle \int sin^2(x).cos(2x) dx∫sin2(x).cos(2x)dx we know: sin2(x) = 1−cos(2x)2\displaystyle sin^2(x)\ = \ \frac{1-cos(2x)}{2}sin2(x) = 21−cos(2x) and cos2(2x) = 1+cos(4x)2\displaystyle cos^2(2x)\ = \ \frac{1+ cos(4x)}{2}cos2(2x) = 21+cos(4x) then ∫sin2(x).cos(2x)dx\displaystyle \int sin^2(x).cos(2x) dx∫sin2(x).cos(2x)dx = ∫1−cos(2x)2⋅cos(2x)dx\displaystyle = \ \int \frac{1-cos(2x)}{2} \cdot cos(2x) dx= ∫21−cos(2x)⋅cos(2x)dx = 12∫[cos(2x) − cos2(2x)]dx\displaystyle = \ \frac{1}{2}\int [cos(2x) \ - \ cos^2(2x)] dx= 21∫[cos(2x) − cos2(2x)]dx = 14sin(2x) −12∫[cos2(2x)]dx\displaystyle = \ \frac{1}{4}sin(2x) \ - \frac{1}{2}\int [cos^2(2x)] dx= 41sin(2x) −21∫[cos2(2x)]dx = 14sin(2x) −12∫1+cos(4x)2dx\displaystyle = \ \frac{1}{4}sin(2x) \ - \frac{1}{2}\int \frac{1+ cos(4x)}{2} dx= 41sin(2x) −21∫21+cos(4x)dx Continue and finish it.....