G
Guest
Guest
Hi
Please can you help me to solve this simultaneous equation?
\(\displaystyle \L \begin{array}{l}
2x + y = 1 \\
\frac{1}{x} - \frac{1}{y} = 2 \\
\end{array}\)
..................................................
\(\displaystyle \L 2x + y = 1\)
\(\displaystyle \L y = 1 - 2x\)
\(\displaystyle \L
\frac{1}{x} - \frac{1}{{1 - 2x}} = 2\)
\(\displaystyle \L
\frac{1}{x} - \frac{1}{{1 - 2x}} - 2 = 0\)
\(\displaystyle \L
\frac{{1 - 2x - x - 2x(1 - 2x)}}{{x(1 - 2x)}} = 0\)
\(\displaystyle \L
\frac{{4x^2 - 5x + 1}}{{x(1 - 2x)}} = 0\)
Can you tell me if this is correct so far?
If it is, when I try to apply the quadratic formula I get a messy answer which doesnt seem right?
Thanks
Please can you help me to solve this simultaneous equation?
\(\displaystyle \L \begin{array}{l}
2x + y = 1 \\
\frac{1}{x} - \frac{1}{y} = 2 \\
\end{array}\)
..................................................
\(\displaystyle \L 2x + y = 1\)
\(\displaystyle \L y = 1 - 2x\)
\(\displaystyle \L
\frac{1}{x} - \frac{1}{{1 - 2x}} = 2\)
\(\displaystyle \L
\frac{1}{x} - \frac{1}{{1 - 2x}} - 2 = 0\)
\(\displaystyle \L
\frac{{1 - 2x - x - 2x(1 - 2x)}}{{x(1 - 2x)}} = 0\)
\(\displaystyle \L
\frac{{4x^2 - 5x + 1}}{{x(1 - 2x)}} = 0\)
Can you tell me if this is correct so far?
If it is, when I try to apply the quadratic formula I get a messy answer which doesnt seem right?
Thanks