Hello, Dazed!
tkhunny already threw you some big hints.
Evidently, you didn't catch them . . .
1)
lim (9-x) / lx-9l
x->9
The limit doesn't exist . . . but I suppose we have to show our work.
Since we have an absolute value, we must consider the two cases:
. . . (1) the inside quantity is positive
. . . (2) the inside quantity is negative.
<u>Case 1</u>:
.x - 9 is positive (that is, x > 9).
. . . . . . .Then |x - 9|
.=
.x - 9
. . . . . . . . . . . . . . 9 - x
. . . .-(x - 9)
The function is:
. -------
. =
. --------
. =
. -1
. . . . . . . . . . . . . . x - 9
. . . . . x - 9
Therefore:
. lim (-1)
. =
. -1
. . . . . . . . . x->9
<u>Case 2</u>:
. x - 9 is negative. (That is, x < 9.)
. . . . . . Then:
.|x - 9|
.=
.9 - x
. . . . . . . . . . . . . . 9 - x
The function is:
. -------
. =
. 1
. . . . . . . . . . . . . . 9 - x
Therefore:
. lim (1)
. =
. 1
. . . . . . . . . x->9
Since the two values are <u>not</u> equal, the limit does not exist.
3)
lim (x^2 + x - 12)/(20 - 13x + 2x^2)
x -> oo
Divide top and bottom by x<sup>2</sup>.
. . . . . . . . . . . . . .1 + 1/x - 12/x<sup>2</sup>
We have:
. lim
. ---------------------
. . . . . . . x->oo
. 20/x<sup>2</sup> - 13/x + 2
As x
→ oo (infinity), those fractions
→ 0.
. . . . . . . . . . . . . 1 + 0 - 0
. . . . 1
So the limit is:
. ------------
. =
. --
. . . . . . . . . . . . . 0 - 0 + 2
. . . . 2