Simplifying Limits

Dazed

New member
Joined
Jun 15, 2005
Messages
24
Hi, I am having some trouble simplifying these limits. Any help would be greatly appreciated. Thanks

1. lim (9-x) / lx-9l
x-->9


2. lim sin^(3)4x / sin5xtan^(2)3x
x-->0


3. lim x^(2)+x-12 / 20-13x+2x^(2)
x--> infinity
 
The First One

Split it up, 9+ and 9-. What can you do with the absolute values if you KNOW what the sign of the expression is?

The Last One

Multiply numerator and denominator by (1/x^2) and simplify separately.

The Middle One

Sorry, I have to go and it looks like that one might take longer.
 
Hello, Dazed!

#2 is pretty awful, but we can bust it if we know this theorem:

. . . . . . . sin θ
. . . lim . ------- . = . 1
. . .θ->0 . . θ

. . . . . . . . . . sin<sup>3</sup>(4x)
2) . lim . --------------------
. . x->0 . sin(5x) tan<sup>2</sup>(3x)
.

. . . . . . . . . .(sin 4x)<sup>3</sup> . . . .1 . . . . cos<sup>2</sup>3x
We have: . ------------ . --------- . ----------
. . . . . . . . . . . . 1 . . . . . sin 5x . . sin<sup>2</sup>3x


I'll multiply each fraction by a special "one":

. . . (4x)<sup>3</sup> . (sin 4x)<sup>3</sup>. .5x . . . .1 . . . . (3x)<sup>2</sup> . . . . 1
. . . ------ . ----------- . ---- . --------- . -------- . ----------- . cos<sup>2</sup>3x
. . . (4x)<sup>3</sup> . . . . 1 . . . . 5x . .sin 5x . . (3x)<sup>2</sup> . .(sin 3x)<sup>2</sup>


Then we have:

. . . .64x<sup>3</sup> . (sin 4x)<sup>3</sup> . .1 . . . 5x . . . .1 . . . .(3x)<sup>2</sup>
. . . ------- . ----------- . --- . -------- . ----- . ----------- . cos<sup>2</sup>3x
. . . . .1 . . . . (4x)<sup>3</sup> . . .5x . .sin 5x . 9x<sup>2</sup> . (sin 3x)<sup>2</sup>

. . . 64x<sup>3</sup> . 1 . . .1. . . . . . . . .(sin 4x )<sup>3</sup>(. . 5x . ) (. . 3x . )<sup>2</sup>
. . . ------ . --- . ---- . cos<sup>2</sup>3x (---------) (---------) (---------)
. . . . .1 . . 5x . 9x<sup>2</sup> . . . . . . . ( . 4x . .) .( sin 5x). ( sin 3x)


The first three fractions reduce to 64/45.

. . As x0, cos<sup>2</sup>(3x) 1

. . And as x0, the last three fractions also 1.

Therefore, the limit is 64/45
 
aahhh

thank you for your help soroban !! Could you also help me with the 1st and 3rd problems too?
 
Hello, Dazed!

tkhunny already threw you some big hints.
Evidently, you didn't catch them . . .

1)
lim (9-x) / lx-9l
x->9
The limit doesn't exist . . . but I suppose we have to show our work.

Since we have an absolute value, we must consider the two cases:
. . . (1) the inside quantity is positive
. . . (2) the inside quantity is negative.

<u>Case 1</u>: .x - 9 is positive (that is, x > 9).
. . . . . . .Then |x - 9| .= .x - 9

. . . . . . . . . . . . . . 9 - x . . . .-(x - 9)
The function is: . ------- . = . -------- . = . -1
. . . . . . . . . . . . . . x - 9 . . . . . x - 9

Therefore: . lim (-1) . = . -1
. . . . . . . . . x->9


<u>Case 2</u>: . x - 9 is negative. (That is, x < 9.)
. . . . . . Then: .|x - 9| .= .9 - x

. . . . . . . . . . . . . . 9 - x
The function is: . ------- . = . 1
. . . . . . . . . . . . . . 9 - x

Therefore: . lim (1) . = . 1
. . . . . . . . . x->9


Since the two values are <u>not</u> equal, the limit does not exist.


3)
lim (x^2 + x - 12)/(20 - 13x + 2x^2)
x -> oo
Divide top and bottom by x<sup>2</sup>.

. . . . . . . . . . . . . .1 + 1/x - 12/x<sup>2</sup>
We have: . lim . ---------------------
. . . . . . . x->oo . 20/x<sup>2</sup> - 13/x + 2

As x oo (infinity), those fractions 0.

. . . . . . . . . . . . . 1 + 0 - 0 . . . . 1
So the limit is: . ------------ . = . --
. . . . . . . . . . . . . 0 - 0 + 2 . . . . 2
 
Top