Simplifying integral: How to simplify 2sqrt{bx+a)[(bx+a)-3a] to 2sqrt{bx+a}[bx-2a] ?

flyingfishcattle

New member
Joined
Dec 25, 2018
Messages
1
Hi,

I have evaluated the integral for:

. . . . .\(\displaystyle \displaystyle \int\, \dfrac{x}{\sqrt{a\, +\, bx\,}}\, dx\)

For my answer I got:

. . . . .\(\displaystyle \displaystyle \dfrac{2\, (bx\, +\, a)^{3/2}}{3b^2}\, -\, \dfrac{2a\, \sqrt{bx\, +\, a\,}}{b^2}\, +\, C\)

But I don't know how to simplify that above to get the below:

. . . . .\(\displaystyle \displaystyle \dfrac{2\, (bx\, -\, 2a)\, \sqrt{bx\, +\, a\,}}{3b^2}\, +\, C\)

Here is my work so far:

. . . . .\(\displaystyle \begin{align}\displaystyle \dfrac{2\, (bx\, +\, a)^{3/2}}{3b^2}\, -\, \dfrac{2a\, \sqrt{bx\, +\, a\,}}{b^2}\, +\, C\, &=\, \dfrac{2\, (bx\, +\, a)^{3/2}}{3b^2}\, -\, \dfrac{3\, \cdot\, 2a\, \sqrt{bx\, +\, a\,}}{3\, \cdot\, b^2}\, +\, C\\
\\
&=\, \dfrac{2\, (bx\, +\, a)^{3/2}\, -\, 3\, \cdot\, 2a\, \sqrt{bx\, +\, a\,}}{3b^2}\\
\\
&=\, \dfrac{\left(2\, \sqrt{bx\, +\, a\,}\right)\, \big((bx\, +\, a)\, -\, 3a\big)}{3b^2}\end{align}\)

How do I get from this to the final form, below?

. . . . .\(\displaystyle \displaystyle \dfrac{2\, (bx\, -\, 2a)\, \sqrt{bx\, +\, a\,}}{3b^2}\, +\, C\)

Any help would be appreciated
 

Attachments

  • Screen Shot 2018-12-25 at 12.37.55 PM.png
    Screen Shot 2018-12-25 at 12.37.55 PM.png
    32.7 KB · Views: 1
  • Screen Shot 2018-12-25 at 12.41.14 PM.jpg
    Screen Shot 2018-12-25 at 12.41.14 PM.jpg
    15.1 KB · Views: 5
  • Screen Shot 2018-12-25 at 12.42.19 PM.jpg
    Screen Shot 2018-12-25 at 12.42.19 PM.jpg
    13.4 KB · Views: 5
  • Screen Shot 2018-12-25 at 12.44.22 PM.jpg
    Screen Shot 2018-12-25 at 12.44.22 PM.jpg
    14.8 KB · Views: 5
  • IMG_3361.jpg
    IMG_3361.jpg
    504.3 KB · Views: 14
Last edited by a moderator:
Hi,

I have evaluated the integral for:

. . . . .\(\displaystyle \displaystyle \int\, \dfrac{x}{\sqrt{a\, +\, bx\,}}\, dx\)

For my answer I got:

. . . . .\(\displaystyle \displaystyle \dfrac{2\, (bx\, +\, a)^{3/2}}{3b^2}\, -\, \dfrac{2a\, \sqrt{bx\, +\, a\,}}{b^2}\, +\, C\)

But I don't know how to simplify that above to get the below:

. . . . .\(\displaystyle \displaystyle \dfrac{2\, (bx\, -\, 2a)\, \sqrt{bx\, +\, a\,}}{3b^2}\, +\, C\)

Here is my work so far:

. . . . .\(\displaystyle \begin{align}\displaystyle \dfrac{2\, (bx\, +\, a)^{3/2}}{3b^2}\, -\, \dfrac{2a\, \sqrt{bx\, +\, a\,}}{b^2}\, +\, C\, &=\, \dfrac{2\, (bx\, +\, a)^{3/2}}{3b^2}\, -\, \dfrac{3\, \cdot\, 2a\, \sqrt{bx\, +\, a\,}}{3\, \cdot\, b^2}\, +\, C\\
\\
&=\, \dfrac{2\, (bx\, +\, a)^{3/2}\, -\, 3\, \cdot\, 2a\, \sqrt{bx\, +\, a\,}}{3b^2}\\
\\
&=\, \dfrac{\left(2\, \sqrt{bx\, +\, a\,}\right)\, \big((bx\, +\, a)\, -\, 3a\big)}{3b^2}\end{align}\)

How do I get from this to the final form, below?

. . . . .\(\displaystyle \displaystyle \dfrac{2\, (bx\, -\, 2a)\, \sqrt{bx\, +\, a\,}}{3b^2}\, +\, C\)

Any help would be appreciated
First get common denominators and then factor out what is common.
In case you need help with that then show us your work.
What do you think the common denominator would be?
 
Last edited by a moderator:
You were doing ok up to your last 2 steps: go look carefully.
 
Hi,

I have evaluated the integral for:

. . . . .\(\displaystyle \displaystyle \int\, \dfrac{x}{\sqrt{a\, +\, bx\,}}\, dx\)

For my answer I got:

. . . . .\(\displaystyle \displaystyle \dfrac{2\, (bx\, +\, a)^{3/2}}{3b^2}\, -\, \dfrac{2a\, \sqrt{bx\, +\, a\,}}{b^2}\, +\, C\)

But I don't know how to simplify that above to get the below:

. . . . .\(\displaystyle \displaystyle \dfrac{2\, (bx\, -\, 2a)\, \sqrt{bx\, +\, a\,}}{3b^2}\, +\, C\)

Here is my work so far:

. . . . .\(\displaystyle \begin{align}\displaystyle \dfrac{2\, (bx\, +\, a)^{3/2}}{3b^2}\, -\, \dfrac{2a\, \sqrt{bx\, +\, a\,}}{b^2}\, +\, C\, &=\, \dfrac{2\, (bx\, +\, a)^{3/2}}{3b^2}\, -\, \dfrac{3\, \cdot\, 2a\, \sqrt{bx\, +\, a\,}}{3\, \cdot\, b^2}\, +\, C\\
\\
&=\, \dfrac{2\, (bx\, +\, a)^{3/2}\, -\, 3\, \cdot\, 2a\, \sqrt{bx\, +\, a\,}}{3b^2}\\
\\
&=\, \dfrac{\left(2\, \sqrt{bx\, +\, a\,}\right)\, \big((bx\, +\, a)\, -\, 3a\big)}{3b^2}\end{align}\)

How do I get from this to the final form, below?

. . . . .\(\displaystyle \displaystyle \dfrac{2\, (bx\, -\, 2a)\, \sqrt{bx\, +\, a\,}}{3b^2}\, +\, C\)

Any help would be appreciated

But there is no extra work needed between the next to last and last lines! Just combine like terms: bx + a - 3a = bx - 2a. Everything you've done is correct, including that last step.
 
Last edited by a moderator:
Top