I need help in how to express my calulation
I've simplified the surd, but which way would you say is the best way of expressing it? the top, in which i multiply the numerator out and divide by 42, or the bottom, where i use reoccurring values and cancel them out, then simplify?
Method 1:
\(\displaystyle \dfrac{3\,\sqrt{14\,}}{\sqrt{42\,}}\,=\, \dfrac{\sqrt{9\,}\,\sqrt{2\,}\, \sqrt{7\,}}{\sqrt{42\,}}\)
. . . . . ..\(\displaystyle =\, \dfrac{\sqrt{126\,}}{\sqrt{42\,}}\, =\, \dfrac{\sqrt{3\,}}{\sqrt{1\,}}\, =\, \sqrt{3\,}\)
Method 2:
\(\displaystyle \dfrac{3\,\sqrt{14\,}}{\sqrt{42\,}}\,=\, \dfrac{\sqrt{9\,}\,\sqrt{2\,}\, \sqrt{7\,}}{\sqrt{3\,}\, \sqrt{2\,}\, \sqrt{7\,}}\)
. . . . . ..\(\displaystyle =\, \dfrac{\sqrt{9\,}}{\sqrt{3\,}}\, =\, \dfrac{\sqrt{3\,}}{\sqrt{1\,}}\, =\, \sqrt{3\,}\)
Thanks for your time
I've simplified the surd, but which way would you say is the best way of expressing it? the top, in which i multiply the numerator out and divide by 42, or the bottom, where i use reoccurring values and cancel them out, then simplify?
Method 1:
\(\displaystyle \dfrac{3\,\sqrt{14\,}}{\sqrt{42\,}}\,=\, \dfrac{\sqrt{9\,}\,\sqrt{2\,}\, \sqrt{7\,}}{\sqrt{42\,}}\)
. . . . . ..\(\displaystyle =\, \dfrac{\sqrt{126\,}}{\sqrt{42\,}}\, =\, \dfrac{\sqrt{3\,}}{\sqrt{1\,}}\, =\, \sqrt{3\,}\)
Method 2:
\(\displaystyle \dfrac{3\,\sqrt{14\,}}{\sqrt{42\,}}\,=\, \dfrac{\sqrt{9\,}\,\sqrt{2\,}\, \sqrt{7\,}}{\sqrt{3\,}\, \sqrt{2\,}\, \sqrt{7\,}}\)
. . . . . ..\(\displaystyle =\, \dfrac{\sqrt{9\,}}{\sqrt{3\,}}\, =\, \dfrac{\sqrt{3\,}}{\sqrt{1\,}}\, =\, \sqrt{3\,}\)
Thanks for your time
Last edited by a moderator: