Simplify: \(\displaystyle \frac{2\sin{x}+1}{\sqrt3 - 2\cos{x}}\)
What I've come to thus far (by multiplying with \(\displaystyle \frac{\sqrt3 + 2\cos{x}}{\sqrt3 + 2\cos{x}}\) and \(\displaystyle \frac{2\sin{x}-1}{2\sin{x}-1}\)) is \(\displaystyle \frac{\sqrt3 + 2\cos{x}}{2\sin{x}-1}\) :x
Oh, not to forget, the solution deals with \(\displaystyle \cot\) (cotangens).
What I've come to thus far (by multiplying with \(\displaystyle \frac{\sqrt3 + 2\cos{x}}{\sqrt3 + 2\cos{x}}\) and \(\displaystyle \frac{2\sin{x}-1}{2\sin{x}-1}\)) is \(\displaystyle \frac{\sqrt3 + 2\cos{x}}{2\sin{x}-1}\) :x
Oh, not to forget, the solution deals with \(\displaystyle \cot\) (cotangens).