\(\displaystyle 47.\, 2\, (x\, -\, 1)\, (2x\, +\, 2)^3\, \left[4\, (x\, -\, 1)\, +\, (2x\, +\, 2)\right]\)
. . . . .\(\displaystyle =\, 2\, (x\, -\, 1)\, (2x\, +\, 2)^3\, \left[4x\, -\, 4\, +\, 2x\, +\, 2\right]\)
. . . . .\(\displaystyle =\, 2\, (x\, -\, 1)\, (2x\, +\, 2)^3\, \left[6x\, -\, 2\right]\)
. . . . .\(\displaystyle =\, 4\, (x\, -\, 1)\, (3x\, -\, 1)\, (2x\, +\, 2)^3\)
How did they go from the next to last line to the last?
how did 2(x-1)(2x+2)^3(6x-2) become 4(x-1)(3x-1)(2x+2)^3 ?
. . . . .\(\displaystyle =\, 2\, (x\, -\, 1)\, (2x\, +\, 2)^3\, \left[4x\, -\, 4\, +\, 2x\, +\, 2\right]\)
. . . . .\(\displaystyle =\, 2\, (x\, -\, 1)\, (2x\, +\, 2)^3\, \left[6x\, -\, 2\right]\)
. . . . .\(\displaystyle =\, 4\, (x\, -\, 1)\, (3x\, -\, 1)\, (2x\, +\, 2)^3\)
How did they go from the next to last line to the last?
how did 2(x-1)(2x+2)^3(6x-2) become 4(x-1)(3x-1)(2x+2)^3 ?
Last edited by a moderator: