Need to simplify whilst removing all fractional exponents.
(X2-1)2 x (X+1)1/2 divided by (x-1)3/2
I will guess that the first lower-case "x" is meant to be "times", while the second lower-case "x" is meant to be the variable "X", so the expression is as follows:
. . . . .\(\displaystyle \dfrac{(x^2\, -\, 1)^2\, (x\, +\, 1)^{\frac{1}{2}}}{(x\, -\, 1)^{\frac{3}{2}}}\)
Is the above correct? If not, please reply with corrections. If so, then the first step (since you're supposed to get rid of the fractional parts of the powers) is to convert to radical notation (
here):
. . . . .\(\displaystyle \dfrac{(x^2\, -\, 1)^2\, \sqrt{\strut x\, +\, 1\, }}{\sqrt{\strut (x\, -\, 1)^3\,}}\)
Then start simplifying, and also rationalizing the denominator (
here):
. . . . .\(\displaystyle \dfrac{(x\, -\, 1)^2\, (x\, +\, 1)^2\, \sqrt{\strut x\, +\, 1\,}}{(x\, -\, 1)\, \sqrt{\strut x\, -\, 1\, }}\, =\, \dfrac{(x\, -\, 1)\, (x\, +\, 1)^2\, \sqrt{\strut x\, +\, 1\, }}{\sqrt{\strut x\, -\, 1\, }}\, =\, \dfrac{(x\, -\, 1)\, (x\, +\, 1)^2\, \sqrt{\strut x\, +\, 1\, }\, \sqrt{\strut x\, -\, 1\,}}{\sqrt{\strut x\, -\, 1\, }\, \sqrt{\strut x\, -\, 1\,}}\)
...and so forth.
I've hit a major wall with this....
How far did you get? Please reply showing your progress so far. Thank you! :wink: