Let f(x) = \(\displaystyle \L \frac{\sqrt{x^{6} + 1}}{x^{3} - 1}\)
determine \(\displaystyle \L \lim_{x\to +\infty}f(x)\)
so I focused on the highest degree terms:
\(\displaystyle \L \lim_{x\to +\infty} \frac{\sqrt{x^{6} + 1}}{x^{3} - 1}\)
=\(\displaystyle \L \lim_{x\to +\infty}\frac{\sqrt{x^{6}}}{x^{3}}\)
=\(\displaystyle \L \lim_{x\to +\infty}\frac{x^{3}}{x^{3}} = 1\)
Now question #1: How would I show for \(\displaystyle \L \lim_{x\to -\infty}f(x)\) without just saying -1?
question #2: am I doing this correctly? I should cancel out as much as possible before pluging and chugging... but I don't think I can reduce this fraction, any....
determine \(\displaystyle \L \lim_{x\to 1+}f(x)\)
\(\displaystyle \L \lim_{x\to 1+} \frac{\sqrt{x^{6} + 1}}{x^{3} - 1}\)
= \(\displaystyle \L \lim_{x\to 1+} \frac{\sqrt{(1+)^{6} + 1}}{(1+)^{3} - 1}\)
= \(\displaystyle \L \lim_{x\to 1+} \frac{\sqrt{2+}}{0+} = +\infty\)
Thanks,
John
determine \(\displaystyle \L \lim_{x\to +\infty}f(x)\)
so I focused on the highest degree terms:
\(\displaystyle \L \lim_{x\to +\infty} \frac{\sqrt{x^{6} + 1}}{x^{3} - 1}\)
=\(\displaystyle \L \lim_{x\to +\infty}\frac{\sqrt{x^{6}}}{x^{3}}\)
=\(\displaystyle \L \lim_{x\to +\infty}\frac{x^{3}}{x^{3}} = 1\)
Now question #1: How would I show for \(\displaystyle \L \lim_{x\to -\infty}f(x)\) without just saying -1?
question #2: am I doing this correctly? I should cancel out as much as possible before pluging and chugging... but I don't think I can reduce this fraction, any....
determine \(\displaystyle \L \lim_{x\to 1+}f(x)\)
\(\displaystyle \L \lim_{x\to 1+} \frac{\sqrt{x^{6} + 1}}{x^{3} - 1}\)
= \(\displaystyle \L \lim_{x\to 1+} \frac{\sqrt{(1+)^{6} + 1}}{(1+)^{3} - 1}\)
= \(\displaystyle \L \lim_{x\to 1+} \frac{\sqrt{2+}}{0+} = +\infty\)
Thanks,
John