simple algebra?

maeveoneill

Junior Member
Joined
Sep 24, 2005
Messages
93
If 2^x = 2(16^12) + 2(8^16), what is the value of x?

This is how I tried to do it, but when I subbed in my value for x, it didnt work:

2^x = 2(16^12) + 2(8^16)
= 2(2^48) + 2(2^48)
= 4(2^48)
= 2^2(2^48)
x = 2 . 48
= 96

HELP CAUSE THIS DOESNT WORK! THANK YOU!!
 
Hello, maeveoneill!

A simple error . . . just before the punchline . . .

If 2x=2(1612)+2(816)\displaystyle 2^x \:= \:2(16^{12})\,+\,2(8^{16}), what is the value of x\displaystyle x?

This is how I tried to do it . . .


2x=2(1612)+2(816)\displaystyle 2^x \:= \:2(16^{12})\,+\, 2(8^{16})
\(\displaystyle \;\;\;\;=\:2(2^:48})\,+\,2(2^{48})\)
        =4(248)\displaystyle \;\;\;\;= \:4(2^{48})
        =22(248)\displaystyle \;\;\;\;= \:2^2(2^{48})
    x=248    \displaystyle \;\;x\:=\:2\cdot48\;\; . . . no
        =96\displaystyle \;\;\;\;=\:96

You had: \(\displaystyle \,2^x\:=\:(2^2)(2^{48})\quad\Rightarrow\quad 2^{50}\)
 
Top