Dear Everybody,
I am having some trouble with proving this set [imath]S=\{(x,y)\in \mathbb{R}^2: 2x^2-4xy+5y^2 \leq 5\}[/imath]. Find any real number [math]R>0[/math] such that [math]\sqrt{x^2+y^2}\leq R[/math] for all [math](x,y)\in S.[/math]
My attempt:
[math]2x^2-4xy+5y^2 =2x^2+(x-y)^2-(x+y)^2+5y^2 \\ \leq x^2+(x-y)-(x+y)+y^2=x^2-2y+y^2 \\ x^2+y^2[/math][math]\sqrt{x^2+y^2}\leq \sqrt{5}[/math].
So [math]R=\sqrt{5}[/math].
Thus S is bounded.
What is the correct technique for elimanating the xy term?
Cbarker12
I am having some trouble with proving this set [imath]S=\{(x,y)\in \mathbb{R}^2: 2x^2-4xy+5y^2 \leq 5\}[/imath]. Find any real number [math]R>0[/math] such that [math]\sqrt{x^2+y^2}\leq R[/math] for all [math](x,y)\in S.[/math]
My attempt:
[math]2x^2-4xy+5y^2 =2x^2+(x-y)^2-(x+y)^2+5y^2 \\ \leq x^2+(x-y)-(x+y)+y^2=x^2-2y+y^2 \\ x^2+y^2[/math][math]\sqrt{x^2+y^2}\leq \sqrt{5}[/math].
So [math]R=\sqrt{5}[/math].
Thus S is bounded.
What is the correct technique for elimanating the xy term?
Cbarker12