Dear all,
can someone help me and say me if he agrees with what i did?
Here is my problem:
Let $\mathbf{Y} \in \mathbb{R}^n$, $p,p_0,m \in \mathbb{N}$ such that $p-p_0 \geq 2$, $\Gamma(\cdot)$ the gamma function and $H$ a projection matrix onto a linear subspace $M \subset \mathbb{R}^n$.
I have to show that the following series converges (it is not necessary true): k=0∑∞(2∣∣Y∣∣∣∣HY∣∣)2kk!∣∣Y∣∣mΓ(k+2p−p0)e−2m−2k(2k)2k(m+2k)2m+2k.
To do so, i used the root test:
R=k→∞lim[(2∣∣Y∣∣∣∣HY∣∣)2kk!∣∣Y∣∣mΓ(k+2p−p0)e−2m−2k(2k)k(m+2k)2m+k]k1=4∣∣Y∣∣2∣∣HY∣∣2e−2k→∞lim2k(m+2k)(k!)k1Γ(k+2p−p0)k1∣∣Y∣∣2kme2k−m(m+2k)2km=4∣∣Y∣∣2∣∣HY∣∣2e−2k→∞lim∣∣Y∣∣2kme2k−m(m+2k)2km(k!)k1Γ(k+2p−p0)k12k(m+2k)
Then, I used k→∞lim∣∣Y∣∣2kme2k−m(m+2k)2km=1
With the Stirling formula $\Gamma(z + b) \sim \sqrt{2\pi}e^{-z}z^{z+b-1/2}$ for $b\in \mathbb{R}$, i have:
k→∞lim(k!)1/k=elimk→∞k1ln(Γ(k+1)) =elimk→∞k1ln(2πe−k−1(k+1)k+1/2) =elimk→∞kln(2π)−kk+1+kk+1/2ln(k+1) =k→∞lim(k+1) and
k→∞limΓ(k+2p−p0)k1=elimk→∞k1ln(Γ(k+2p−p0)) =elimk→∞k1ln(2πe−k(k)k+2p−p0−1) =elimk→∞kln(2π)−kk+kkln(k)+2kp−p0−1ln(k) =elimk→∞ln(k)(kln(k)ln(2π)−ln(k)1+1+2kp−p0−1) =k→∞limk.
Then we have:
k→∞lim(k!)k1Γ(k+2p−p0)k12k(m+2k)=k→∞lim(k+1)k2k(m+2k)=4.
Finally, we then have:
R=4∣∣Y∣∣2∣∣HY∣∣2e−2⋅1⋅4=∣∣Y∣∣2∣∣HY∣∣2e−2
because ∣∣Y∣∣∣∣HY∣∣=∣∣Y∣∣∣∣Y∣∣−∣∣(In−H)Y∣∣≤1 we have $R \leq e^{-2} < 1$.
can someone help me and say me if he agrees with what i did?
Here is my problem:
Let $\mathbf{Y} \in \mathbb{R}^n$, $p,p_0,m \in \mathbb{N}$ such that $p-p_0 \geq 2$, $\Gamma(\cdot)$ the gamma function and $H$ a projection matrix onto a linear subspace $M \subset \mathbb{R}^n$.
I have to show that the following series converges (it is not necessary true): k=0∑∞(2∣∣Y∣∣∣∣HY∣∣)2kk!∣∣Y∣∣mΓ(k+2p−p0)e−2m−2k(2k)2k(m+2k)2m+2k.
To do so, i used the root test:
R=k→∞lim[(2∣∣Y∣∣∣∣HY∣∣)2kk!∣∣Y∣∣mΓ(k+2p−p0)e−2m−2k(2k)k(m+2k)2m+k]k1=4∣∣Y∣∣2∣∣HY∣∣2e−2k→∞lim2k(m+2k)(k!)k1Γ(k+2p−p0)k1∣∣Y∣∣2kme2k−m(m+2k)2km=4∣∣Y∣∣2∣∣HY∣∣2e−2k→∞lim∣∣Y∣∣2kme2k−m(m+2k)2km(k!)k1Γ(k+2p−p0)k12k(m+2k)
Then, I used k→∞lim∣∣Y∣∣2kme2k−m(m+2k)2km=1
With the Stirling formula $\Gamma(z + b) \sim \sqrt{2\pi}e^{-z}z^{z+b-1/2}$ for $b\in \mathbb{R}$, i have:
k→∞lim(k!)1/k=elimk→∞k1ln(Γ(k+1)) =elimk→∞k1ln(2πe−k−1(k+1)k+1/2) =elimk→∞kln(2π)−kk+1+kk+1/2ln(k+1) =k→∞lim(k+1) and
k→∞limΓ(k+2p−p0)k1=elimk→∞k1ln(Γ(k+2p−p0)) =elimk→∞k1ln(2πe−k(k)k+2p−p0−1) =elimk→∞kln(2π)−kk+kkln(k)+2kp−p0−1ln(k) =elimk→∞ln(k)(kln(k)ln(2π)−ln(k)1+1+2kp−p0−1) =k→∞limk.
Then we have:
k→∞lim(k!)k1Γ(k+2p−p0)k12k(m+2k)=k→∞lim(k+1)k2k(m+2k)=4.
Finally, we then have:
R=4∣∣Y∣∣2∣∣HY∣∣2e−2⋅1⋅4=∣∣Y∣∣2∣∣HY∣∣2e−2
because ∣∣Y∣∣∣∣HY∣∣=∣∣Y∣∣∣∣Y∣∣−∣∣(In−H)Y∣∣≤1 we have $R \leq e^{-2} < 1$.