I have to show that the sequence [imath]\{p_n\}[/imath] defined by [imath]p_n=\frac{n+1}{n-2}[/imath] for [imath]n=3,4,\dots[/imath] is a Cauchy sequence using the definition. I tried this:
[math]|p_n-p_m|=\left|\frac{n+1}{n-2}-\frac{m+1}{m -2}\right|=\left|\frac{-3n+3m}{(n-2)(m-2)}\right|=\frac{3|m-n|}{(n-2)(m+2)} ..............edited[COLOR=rgb(0, 0, 0)][/math][/COLOR]
Assuming [imath]m\ge n[/imath], it is
[math]\frac{3|m-n|}{(n-2)(m+2)}=\frac{3(m-n)}{(n-2)(m-2)}=3\frac{m-2+2-n}{(n-2)(m-2)}=\frac{3}{n-2}-\frac{3}{m-2}[/math]Since [imath]-\frac{3}{m-2}<0[/imath] because [imath]m=3,4,\dots[/imath], it is
[math]\frac{3}{n-2}-\frac{3}{m-2}<\frac{3}{n-2}[/math]Since [imath]\frac{3}{n-2} \to 0[/imath] as [imath]n \to \infty[/imath], for any [imath]\epsilon>0[/imath] there exists [imath]N\in\mathbb{N}[/imath] such that [imath]n,m \ge N[/imath] implies [imath]|p_n-p_m|<\epsilon[/imath].
Is this correct? I am not sure about the assumption [imath]m \ge n[/imath] and the inequalities I used.
[math]|p_n-p_m|=\left|\frac{n+1}{n-2}-\frac{m+1}{m -2}\right|=\left|\frac{-3n+3m}{(n-2)(m-2)}\right|=\frac{3|m-n|}{(n-2)(m+2)} ..............edited[COLOR=rgb(0, 0, 0)][/math][/COLOR]
Assuming [imath]m\ge n[/imath], it is
[math]\frac{3|m-n|}{(n-2)(m+2)}=\frac{3(m-n)}{(n-2)(m-2)}=3\frac{m-2+2-n}{(n-2)(m-2)}=\frac{3}{n-2}-\frac{3}{m-2}[/math]Since [imath]-\frac{3}{m-2}<0[/imath] because [imath]m=3,4,\dots[/imath], it is
[math]\frac{3}{n-2}-\frac{3}{m-2}<\frac{3}{n-2}[/math]Since [imath]\frac{3}{n-2} \to 0[/imath] as [imath]n \to \infty[/imath], for any [imath]\epsilon>0[/imath] there exists [imath]N\in\mathbb{N}[/imath] such that [imath]n,m \ge N[/imath] implies [imath]|p_n-p_m|<\epsilon[/imath].
Is this correct? I am not sure about the assumption [imath]m \ge n[/imath] and the inequalities I used.
Last edited by a moderator: