Show that 1-[cos2A / cos^2A] = tan^2A

Re: confused

Raul said:
Show that 1-[cos2A / cos^2A] = tan^2A

From the "double-angle" identities, we see that

cos 2A = cos^2 A - sin^2 A

Substitute into the left-hand side:

1 - [ (cos^2 A - sin^2 A) / cos^2 A]

Write 1 as cos^2 A / cos^2 A:

(cos^2 A / cos^2 A) - [ (cos^2 A - sin^2 A) / cos^2 A ]

Now, the two fractions have the same denominator. Subtract the numerators, and place the result over the common denominator:

cos^2 A - (cos^2 A - sin^2 A)
----------------------------------
xxxxxxxxcos^2 A

Ok...you take it from here.

I hope this helps you.
 
Hello, Raul!

Another approach . . .


Show that: \(\displaystyle \L\,1\,-\,\frac{\cos(2A)}{\cos^2(A)}\: = \:\tan^2(A)\)

Use the identity: \(\displaystyle \,\cos(2\theta) \:=\:2\cos^2(\theta)\,-\,1\)

We have: \(\displaystyle \L\,1\,-\,\frac{2\cos^2(A)\,-\,1}{\cos^2(A)} \;=\; 1 \,-\,\left[\frac{2\cos^2(A)}{\cos^2(A)}\,-\,\frac{1}{\cos^2(A)}\right] \;=\;1\,-\,\left[2\,-\,\sec^2(A)\right]\)

. . \(\displaystyle \L=\;1\,-\,2\,+\,\sec^2(A\)\;=\;\sec^2(A)\,-\,1\;=\;\tan^2(A)\)

 
Top