.
Show that (-1)(-1) = 1
Start with what you know:
------------------------------
1 multiplied by any integer equals that integer.
0 multiplied by any integer equals 0.
For any integer a, \(\displaystyle \ \ \)a + (- a) = 0
_____________________________________________
Start with a true statement:
\(\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)\(\displaystyle 0 = 0\)
\(\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)\(\displaystyle 1 \ + \ (- 1) = 0\)
\(\displaystyle \ \ \ \ \ \ \)\(\displaystyle [1 \ + \ (- 1)](-1) = 0(-1)\)
\(\displaystyle 1(-1) \ + \ (-1)(-1) = 0\)
\(\displaystyle \ \ \ \ \ \)\(\displaystyle -1 \ + \ (-1)(-1) = 0\)
\(\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)\(\displaystyle (-1)(-1) = 1\)
Show that (-1)(-1) = 1
Start with what you know:
------------------------------
1 multiplied by any integer equals that integer.
0 multiplied by any integer equals 0.
For any integer a, \(\displaystyle \ \ \)a + (- a) = 0
_____________________________________________
Start with a true statement:
\(\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)\(\displaystyle 0 = 0\)
\(\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)\(\displaystyle 1 \ + \ (- 1) = 0\)
\(\displaystyle \ \ \ \ \ \ \)\(\displaystyle [1 \ + \ (- 1)](-1) = 0(-1)\)
\(\displaystyle 1(-1) \ + \ (-1)(-1) = 0\)
\(\displaystyle \ \ \ \ \ \)\(\displaystyle -1 \ + \ (-1)(-1) = 0\)
\(\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)\(\displaystyle (-1)(-1) = 1\)